PHASE 1 GEOTECHNICAL DATA REPORT

Alexandria Waterfront Flood Mitigation Alexandria, Virginia

Schnabel Reference: 16C12012 October 26, 2016

Celebrating 60 Years 1956 - 2016

October 26, 2016

Mr. Jeffrey Lohr, PE Stantec 4500 Daly Drive, Suite 100 Fairfax Chantilly, VA 20151

Subject:Project 16C12012, Alexandria Waterfront Flood MitigationPhase 1 Geotechnical Data Report, Alexandria, Virginia

Dear Mr. Lohr:

SCHNABEL ENGINEERING, LLC (Schnabel) is pleased to submit our Phase 1 Geotechnical Data report for this project. This report includes tables, figures, and appendices with relevant data collected for this study. This study was performed in accordance with our proposal dated March 22, 2016, as authorized by the Subconsultant Agreement effective February 16, 2016.

We appreciate the opportunity to be of service for this project. Please call us if you have any questions regarding this report.

Sincerely,

SCHNABEL ENGINEERING, LLC

Nancy A. Straub, PE, ENV SP, LEED AP Associate

Hamid M. Riahi, PE

Daman U.O. Kazu

Qamar A. O. Kazmi, PE Principal

RTH:BB:NS:nv

Senior Associate

G:\2016\PROJECTS\16C12012 - ALEXANDRIA WATERFRONT\03-SE PRODUCTS\03-REPORTS\02-FINAL\16C12012 - FINAL GDR ALEXANDRIA WATERFRONT.DOCX

PHASE 1 GEOTECHNICAL DATA REPORT ALEXANDRIA WATERFRONT FLOOD MITIGATION ALEXANDRIA, VIRGINIA

TABLE OF CONTENTS

1.0	INTRODUCTION1				
	1.1	Project Overview			
	1.2	Purpose of Report			
2.0	SCOPI	E OF SERVICES			
3.0	DESC	RIPTION OF SITE AND PROPOSED CONSTRUCTION			
	3.1	Site Description			
	3.2	Proposed Construction			
4.0	SUBSU	JRFACE EXPLORATION PROGRAM			
	4.1	Subsurface Exploration and Field Testing			
	4.2	Previous Explorations by Others			
5.0	LABO	RATORY TESTING			
	5.1	Current Laboratory Testing Program			
	5.2	Previous Testing			
6.0	GEOL	DGY AND SUBSURFACE CONDITIONS			
	6.1	Regional Geology			
	6.2	Site Geology			
	6.3	Generalized Subsurface Stratigraphy			
	6.4	Laboratory Test Results			
	6.5	Groundwater			
	6.6	Soil Corrosivity Potential			
7.0	LIMITA	ATIONS			
8.0	REFEF	RENCES			

LIST OF FIGURES

Figure 1:	Site Vicinity Map
Figure 2:	Alexandria Historic Shoreline
Figure 3A-F:	Test Boring Location Plan

LIST OF TABLES

No table of figures entries found.

APPENDICES

- Appendix A: Subsurface Exploration Data
- Appendix B: Previous Subsurface Exploration Data (by Others)
- Appendix C: Soil Laboratory Test Data
- Appendix D: Laboratory Test Data (by Others)

1.0 INTRODUCTION

1.1 Project Overview

In 2012, the City of Alexandria, Virginia approved the Alexandria Waterfront Small Area Plan (Waterfront Plan), which provides a 20 to 30 year vision for development of the Alexandria waterfront. The Waterfront Plan includes a framework for revitalizing Alexandria's waterfront by incorporating Alexandria's history, expanding and enhancing public open spaces, improving public access and connectivity, promoting the waterfront as an arts and cultural destination, and ensuring compatible development. The area of the proposed Waterfront Plan extends from Wilkes Street on the south to Canal Center Plaza on the north, and between the Potomac River to the east and Union Street (from Wilkes Street to Pendleton Street) and North Lee Street (from Pendleton Street to Canal Center Plaza) on the west.

Phase I of the planned waterfront development will include construction of a promenade, a bulkhead, and a flood mitigation system in the "Core Area" of the Waterfront Plan. The Core Area of the proposed development, bounded by the Potomac River to the east, Queen Street to the north, Union Street to the west, and Duke Street to the south, is shown on Figure 1, Site Vicinity Map.

1.2 Purpose of Report

The purpose of this report is to present the data from Phase 1 of our geotechnical investigation for the Phase I flood mitigation system and Potomac River shoreline improvements. The data presented in this report will be used to advance the concept-level design. A Phase 2 geotechnical investigation will be performed in the future to collect additional information for design.

2.0 SCOPE OF SERVICES

Our proposal dated March 22, 2016 and our contract with Stantec Consulting Services, Inc. (Stantec) dated February 16, 2016, defines the scope of services for this project. The scope of services includes the following:

- Task 1 Project Management and Coordination
- Task 2 Information Gathering
- Task 4 Civic Engagement
- Task 6 Landscape and Flood Mitigation Construction Documents

This Geotechnical Data Report has been prepared as part of Task 2 listed above.

3.0 DESCRIPTION OF SITE AND PROPOSED CONSTRUCTION

3.1 Site Description

The subject site is located within the City of Alexandria, Virginia (City). The City is a municipality with a population of approximately 140,000, located on the west bank of the Potomac River, near Washington, D.C. The subject site is located in the Old Town area of the City near the waterfront on reclaimed land as shown in Figure 2. Phase I of the Waterfront Plan project extends from South Union Street on the west to the Potomac River on the east and from Queen Street on the north to Duke Street on the south. The subject site is generally level and highly developed with a variety of buildings, roadways, parks, piers, and other structures.

We obtained this site information from a site plan dated May 2016, prepared by Stantec, and through our site visits.

3.2 Proposed Construction

We understand that the following improvements will be performed as part of the Phase I flood mitigation system and Potomac River shoreline improvements project:

- A new riverfront promenade 20 ft to 25 ft in width adjacent to the new structural bulkhead. The promenade includes a paved landside component; a riverside, over-water boardwalk constructed on pilings; and areas with a stepped bulkhead, or grand steps, into the water.
- A new structural bulkhead will be installed to at least EL 6.0 along the Potomac River within the project area. The proposed bulkhead will be generally located east of the existing shoreline and in some portion east of the U.S. Army Corps of Engineers bulkhead line.
- Two proposed pump stations, including screens, wet wells, pumps, backup generators, backup fuel sources, discharge piping, mechanical equipment, controls, and all related infrastructure. Each pump station site will include a pair of park pavilion buildings to elevate the pump station equipment above the flood plain, as well as incorporate related park uses including storage, restrooms, and service areas.
- A storm sewer network to convey upstream runoff directly to the river, bypassing the pump stations. The proposed bypass storm sewer network should help decrease the size of drainage area serviced by the pump stations.
- A new storm sewer inlet and pipe network to collect and convey runoff from the proposed development area to the proposed pump station wet wells.

The locations, extents, and elevations of these improvements are currently conceptual and will be developed during future design phases.

4.0 SUBSURFACE EXPLORATION PROGRAM

We performed a geotechnical exploration program consisting of test borings to explore the subsurface conditions underlying the site and to evaluate the geotechnical properties of the materials encountered. Exploration methods used are discussed below. The appendices to this report contain the results of our exploration.

4.1 Subsurface Exploration and Field Testing

4.1.1 Test Borings

Our subcontractor, Free-State Drilling of Frederick, Maryland, drilled seven (7) test borings under our observation between August 8, 2016 and August 22, 2016. The borings were advanced using either hollow stem augers (HSA) or mud rotary drilling techniques. HSA were used in shallower borings where the soils were anticipated to be at least medium dense to medium stiff. Mud rotary techniques were used in borings BH-2A, RCP-1, and SW-1 due to the anticipated very soft soils below the groundwater table and the potential for encountering wood or other debris. A decontamination pad was set up in the drum staging area at 910 South Payne Street.

During the drilling of BH-2, significant wood debris was encountered in the upper 15 ft which caused the lead HSA to shear off. The damaged auger was recovered from the borehole, and the borehole was abandoned using bentonite grout. The boring was resumed in an adjacent offset hole, BH-2A, using a tricone roller bit and rotary drilling methods. As the boring was advanced, a casing was installed to maintain borehole stability when potentially collapsible layers were encountered.

In both methods of drilling, the Standard Penetration Test (SPT) was performed at selected depths in the borings. Split spoon samples were obtained during the SPT using a hydraulically driven automatic trip hammer (ATH). Most correlations with SPT data are based on N-values collected with a safety hammer. The energy applied to the split-spoon sampler using the ATH is about 33 percent greater than that applied using the safety hammer, resulting in lower N-values. The hammer blows shown on the boring logs are uncorrected for the higher energy.

As the borings were advanced, an archaeologist provided by Stantec observed the soil samples and soil cuttings to determine if any historical artifacts were present. In addition, a representative from GeoConcepts was on-site during drilling to screen the samples for potential environmental contamination using a Photoionization Detector (PID). Representative sample(s) were collected from the test borings by GeoConcepts to be submitted for environmental laboratory testing. The results of their testing will be provided by GeoConcepts under separate report cover.

As the borings were advanced and SPT samples obtained, the split spoon sampler was decontaminated by scrubbing it with water and a non-toxic soap between each sample. Upon completion of each test boring, the equipment was decontaminated in the drum staging area. The equipment was cleaned using a non-toxic soap and the decontamination wash water was placed in drums for disposal.

During the drilling of each test boring, the soil cuttings, drilling fluid, decontamination wash water, and disposable sampling equipment were collected and placed in clean, clearly labeled, 55-gal drums and

transported to a drum staging area for temporary storage until final disposal. At the conclusion of the subsurface investigation, the drums were collected and disposed of at a licensed disposal facility by the certified soil disposal contractor, AEG Environmental Products & Services. Borings completed in pavement were backfilled with bentonite chips to just below the surface of the pavement. The pavement was patched with quick-setting concrete or cold-patch asphalt, as appropriate. Borings performed in non-paved areas were backfilled with a cement-bentonite grout.

Appendix A includes specific observations, remarks, and logs for the borings, classification criteria, drilling methods, and sampling protocols. Figures 3A through 3F, included at the end of this report, indicate the test boring locations. Soil samples collected in the field, excluding those taken for environmental testing, were taken to Schnabel's offices for further review and testing. We will retain soil samples up to 45 days beyond the issuance of this report, unless you request other disposition.

4.2 Previous Explorations by Others

URS previously performed a preliminary subsurface exploration on this site near the proposed locations for the two pump stations (one near each pump station). Test logs for the two test borings performed as part of that exploration are included in Appendix B.

These data were developed by others and we were not present during collection of this information. We have reviewed the data for reasonableness, but we assume no responsibility for the completeness and accuracy of this information.

5.0 LABORATORY TESTING

Selected samples obtained during the subsurface exploration were submitted to our laboratory, GeoTesting Express and Microbac Laboratories for testing. The testing aided in the classification of materials encountered during the subsurface exploration. Results of the moisture content and index testing are shown on the boring logs in Appendix A. The remainder of the test results are presented in the Summary of Laboratory Tests in Appendix C and are summarized in Section 6.0.

5.1 Current Laboratory Testing Program

5.1.1 Index Testing

We performed natural moisture content, Atterberg Limit, and gradation tests on 44 jar and two Shelby tube samples of soils representing Strata A, B, C, and D. The testing was performed to confirm the field soil classifications and to provide parameters for use in estimation of soil properties based on published correlations.

5.1.2 Strength Testing

Our subcontractor, GeoTesting Express, performed one unconsolidated-undrained (UU) triaxial shear test on a tube sample collected from boring BH-1 at a depth of 60.5 ft below ground surface (bgs) representing Stratum D to evaluate the shear strength of these materials.

5.1.3 Corrosivity Testing

We performed tests for pH, sulfides, redox potential, and resistivity testing on 10 samples representing Strata A, B, and D. In addition, Microbac Laboratories, performed chloride and sulfate testing on the same 10 samples.

5.2 Previous Testing

URS performed soil laboratory tests on selected samples obtained from the site. Testing included moisture content, grain size analysis, Atterberg Limits, and environmental contamination. Previous test results are presented in Appendix D.

These data were developed by others and we were not present during the performance of these tests. We have reviewed these data for reasonableness, but we assume no responsibility for the completeness and accuracy of this information.

6.0 GEOLOGY AND SUBSURFACE CONDITIONS

6.1 Regional Geology

Based on published geologic information (Fleming 2015), the project site is located within the Atlantic Coastal Plain Physiographic Province. Fill was placed along much of the shoreline of the Potomac River to reclaim the land and raise the grade to allow for the expansion of the waterfront. Below the fill, Quaternary-period alluvial deposits (Qa) consisting of boulders, gravel, sand, and mud, often containing mica, are present along the floodways of streams and rivers. These recent alluvial deposits taper out to the west of the Potomac River. Below the recent alluvium, the Old Town Terrace Deposits, described as repetitive sequences of sand, gravel, and silty clay with organic layers, were deposited approximately 150,000 to 15,000 years ago. Due to the thick layers of existing fill, recent alluvium and The Old Town Terrace deposits, the specific subsurface stratigraphy below the Old Town Terrace depositions is uncertain. Fleming depicts early Cretaceous-age sediments of the Potomac Group, including the Arell Clay member (K_{pa}), the Cameron Valley Sands (K_{pev}) and Chinaquapin Hollow fine sandy clays (K_{pch}). The regional bedrock formation is anticipated to be the metamorphosed mafic to felsic volcanic rocks and sediments of the Chopawamsic Formation. Bedrock is estimated to be approximately 350 ft to 500 ft below sea level and dipping eastward.

6.2 Site Geology

The existing fill soils of Stratum A are believed to be a combination of sand, gravel, clay, topsoil, and construction debris placed sometime after 1749 as the wharves and the waterfront were developed. Below the existing fill, recent alluvial deposits consisting of boulders, gravel, sand, and mud are encountered. The Old Town Terrace Deposit generally consists of repetitive sequences of coarse to fine sediments, gravelly in their lower parts, grading up through sand and muddy sand into mud, which are separated by significant organic layers. At about 60-ft to 75-ft depth below the ground surface, Fleming anticipates the soils to transition to the gray to blue-gray, very stiff to hard, lacustrine clays of the Arell member. The Arell clays are reported to contain abundant fractures and a high content of expandable-lattice clay minerals.

6.3 Generalized Subsurface Stratigraphy

Based on the test boring data and laboratory test results presented herein, we interpret that the following generalized strata underlie the site to the depths explored at the boring locations. The following strata designations do not imply continuity of the materials described, but give general descriptions and characteristics of the materials at the project site. In addition, the strata designations may be revised after additional explorations are completed.

Stratum	Where Present	Description
Stratum A:	Below the asphalt and concrete to	Gray to dark gray/black, light brown to
(Fill)	depth of up to approximately 43.5	brown, and red FILL, sampled as
	ft-bgs. Present in all seven borings	Gravel (GW, GC, GP-GC), Sand (SC, SP-
		SM, SP), Silt (MH), and Clay (CL, CH)

with varying amounts of sand, gravel, silt,

		and clay. Also present in varying amounts: mica, shells, and other debris including ceramic, metal, wood fragments, wood fibers, glass, and brick; soft to stiff (N = Weight of Hammer (WOH) to 12) where fine-grained and very loose to very dense (N = 2 to 52) where coarse- grained. Pocket penetrometer (PP) test results (estimated unconfined compressive strength) recorded for the fine-grained soils ranged from 0.0 to 2.5 tsf.
Stratum B: Recent Alluvium	Below Stratum A, where present, and above Stratum C	Light to dark gray and grayish brown Silt (ML, MH), Clay (CL, CH), Organic Clay (OH), and Sand (SC) with varying amounts of gravel, sand, silt, and clay. Also present was varying amounts of wood, wood fibers, and mica; very soft to medium stiff (N=WOH to 7 bpf). PP test results recorded for the fine-grained soils ranged from 0.0 to 0.5 tsf.
Stratum C: Old Town Terrace	Below Stratum A or Stratum B (where present)	Gray Sand (SM, SP, SP-SC) and Silt (ML) with varying amounts of gravel, silt, and sand. Also present was gravel and mica; very loose to loose (N=WOH to 11 bpf).
Stratum D: (Potomac Group)	Below Stratum B (where present), and below Stratum C	Gray to dark gray, bluish gray, brown, and reddish brown Elastic Silt (MH) and Clay (CH, CL) with varying amounts of gravel, sand, and mica; medium stiff to hard (N=5 to 35). PP test results recorded for the fine-grained soils ranged from 2.0 to 4.5 tsf.

6.4 Laboratory Test Results

Selected soil samples recovered from the soil borings were tested for water content, grain size distribution, Atterberg limits, presence of organics, undrained shear strength, and corrosion potential in general conformance with applicable ASTM and AWWA standards. The results of the above testing are summarized by stratum in Table 1 below and the test results are included in Appendix C.

Stantec Phase 1 Geotechnical Data Report Alexandria Waterfront Flood Mitigation

One unconsolidated-undrained (UU) triaxial shear test was performed on a sample of elastic silt (MH) of Stratum D collected from boring BH-1 at a depth of 60.5 ft bgs. The test resulted in an undrained shear strength of 1,524 psf.

Stratum	Moisture Content (%)	Fines Content (%)	Liquid Limit	Plastic Limit	Plasticity Index	Oven- Dried Liquid Limit	Specific Gravity	Bulk Density (pcf)
Α	9.1 - 94.3	2 – 95.7	26 – 54	18 - 31	8 – 23	-	2.67 – 2.73	98.01
В	24.6 - 69.7	41.4 – 98.6	44 – 74	28 – 32	16 – 42	36 – 42	2.61 – 2.69	-
С	20 – 23.5	10.3 - 33.8	20	17	3	-	_	-
D	28.7 - 37.7	90.4 – 99.1	59 - 90	24 - 31	28 - 61	-	2.63 - 2.87	118.7

Table 1: Summary of Index Test Results by Stratum

(1) "-" denotes that the laboratory test was not performed

(2) If the ratio of the oven-dried liquid limit to the air-dried liquid limit is less than 0.75, the soil is classified as "organic"

6.5 Groundwater

We observed groundwater during drilling in all seven borings at depths ranging from 3 ft to 13.5 ft bgs, which corresponds to about EL 0.5 to EL -9.0 ft. The test boring logs in Appendix A include groundwater level measurements obtained during our subsurface exploration. These data include depths to groundwater encountered during drilling, upon drilling completion, and following completion of the boring. For borings drilled with mud rotary techniques (BH-2A, RCP-1, and SW-1), the use of water during the drilling process makes groundwater level observations unreliable.

We did not obtain long-term water level readings since test borings were backfilled upon completion for safety reasons.

The groundwater levels on the logs indicate our estimate of the water table at the time of our subsurface exploration. The final design should anticipate the fluctuation of the hydrostatic level depending on variations in precipitation, surface runoff, pumping, tidal action, leaking utilities, and similar factors. Table 2 below gives a summary of the groundwater observations made during the subsurface investigation.

Boring	Boring Elevation (ft)	Depth of Boring (ft)	Depth Encountered (ft)	Depth at Completion (ft)	Depth when Casing Pulled (ft)
BH-1	3.47	100	4	14	-
BH-2	3.42	15.5	3.0	10.5	-
BH-2A ⁽²⁾	3.42	100	3.0	12 ²	-
PS-1	3.81	15	8	8.5	4
RCP-1 ⁽²⁾	3.94	65	9	7.5 ²	-
SS-1	4.05	40	6.5	25.5	8.5
SS-2	4.42	25	Dry	Dry	13.5
SW-1 ⁽²⁾	4.07	35	6	5 ²	-

 Table 2: Summary of Groundwater Observations

(1) "-" denotes a reading was not recorded

(2) These groundwater measurements are not considered reliable because of the addition of water during drilling and should not be considered representative of actual conditions

6.6 Soil Corrosivity Potential

Corrosion potential testing, consisting of resistivity, oxidation-reduction potential, chlorides, sulfates, sulfides and pH testing, was performed on selected samples of soil from across the site. We recommend the results of our corrosion potential testing be provided to the project corrosion consultant to evaluate the corrosion potential of the on-site soils and provide recommendations. Table 3 below summarizes the results of the corrosion potential testing with full details provided in Appendix C.

Table 3. Summary of Corrosion Potential Genes Test Results					
	Stratum				
Test	Α	В	С	D	
рН	6.5 to 12.0	6.3 to 6.4	-	4.1 to 5.4	
Oxidation Reduction Potential (mV)	-243 to 33	35 to 38	-	77 to 135	
Resistivity (ohm-cm)	1800 to 6100	2000 to 2400	-	800 to 900	
Sulfides (presence)	Negative	Negative	-	Negative	
Chlorides (mg/kg)	19 to 160	18 to 50	-	ND	
Sulfates (mg/kg)	12 to 790	43 to 150	-	15 to 18	
AWWA Ranking	8 to 14	8 to 11	-	11 to 15.5	
AASHTO Sulfate Rating	Low to Moderate Exposure	Low to Moderate Exposure	-	Low Exposure	
AASHTO Chlorides Rating	Low Potential	Low Potential	-	Low Potential	
ACI Sulfate Exposure Rating	Low to Moderate Exposure	Low to Moderate Exposure	-	Low Exposure	

Table 3: Summar	y of Corrosion Potential Series Test Results
-----------------	--

(1) "-" denotes the laboratory test was not performed

(2) "ND" denotes that analyte not detected at or above reporting limit

Table 3 presents the corrosion potential for the various strata per American Water Works Association (AWWA) Specification C105. AWWA Specification C105 includes a procedure for ranking soils on a 10-point scale to evaluate whether the soils are potentially corrosive to cast iron. This standard also includes recommendations for providing corrosion protection of cast iron pipes that are installed in soils that have a ranking of 10 or greater. Although the specification is specific for ductile iron pipes, the AWWA ranking system is widely used to evaluate the corrosion potential in other ferrous metals based on the similar behavior of cast iron and steel when exposed to corrosive environments.

We also tested selected samples for chloride and sulfates, which can cause significant deterioration of buried concrete structures and reinforcing steel over time. AASHTO uses a chloride threshold of 500 ppm in assessing potential pipe corrosion. If the results of the chloride testing are above 500 mg/kg (ppm), then the test is indicative of potential pipe corrosion. The potential exposure to chlorides and sulfates per AASHTO based on this criterion is provided in Table 3.

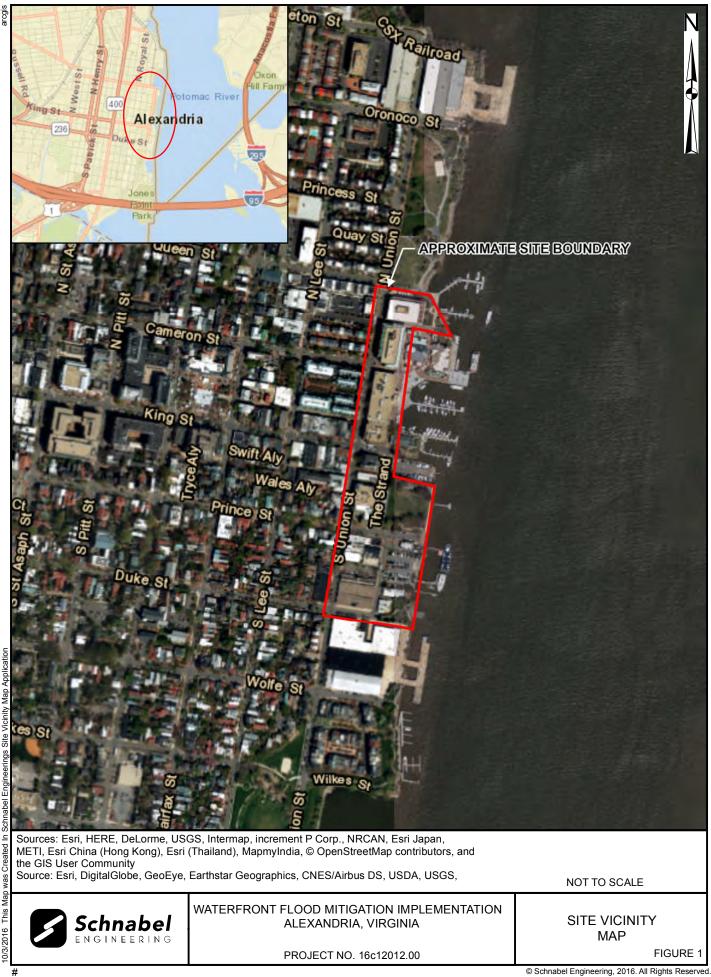
Guidance provided in the American Concrete Institute (ACI) Publication 318, Section 4.3 (as designated in Section 1904.3 of the IBC 2009 manual) indicate that sulfate exposure is considered low if the results are less than 150 mg/kg (ppm). If the results are greater than or equal to 150 mg/kg (ppm), but less than 1,500 mg/kg (ppm), the sulfate exposure is considered moderate. If the results are greater than 1,500 mg/kg (ppm), but less than 10,000 mg/kg (ppm), then the sulfate exposure is severe. If the results are greater than 10,000 mg/kg (ppm) then the sulfate exposure is very severe. The corrosion potential rating per AASHTO based on this criterion is provided in Table 3.

7.0 LIMITATIONS

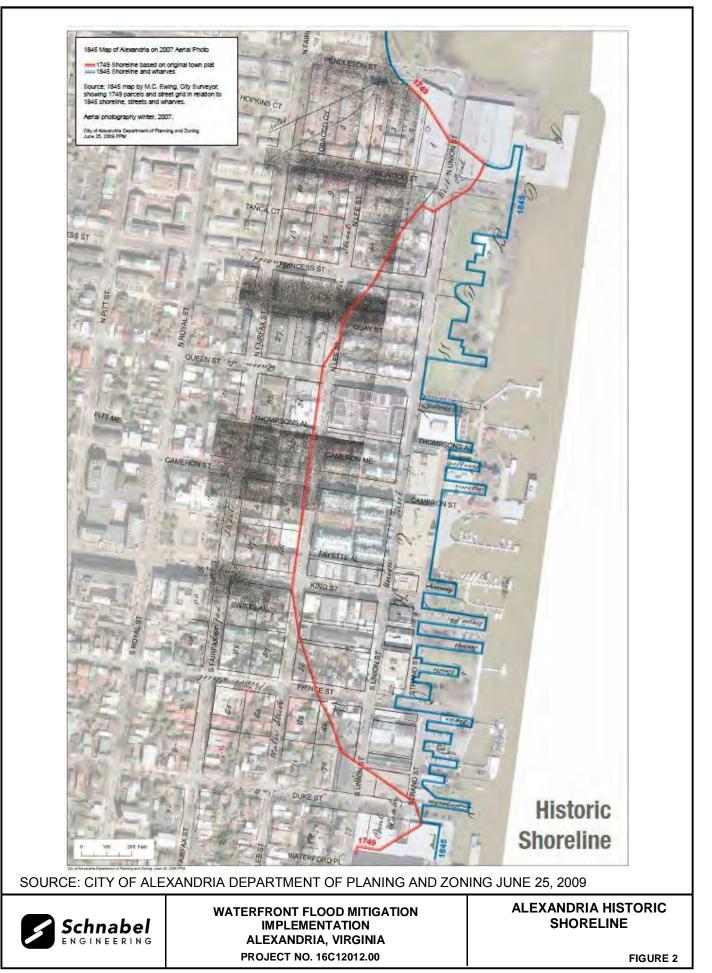
The subsurface conditions described in this data report were developed based on the information revealed by our exploration and our review of data provided to us by others.

This report has been prepared to aid in the evaluation of this site and to assist in the design of the project. It is intended for use concerning this specific project.

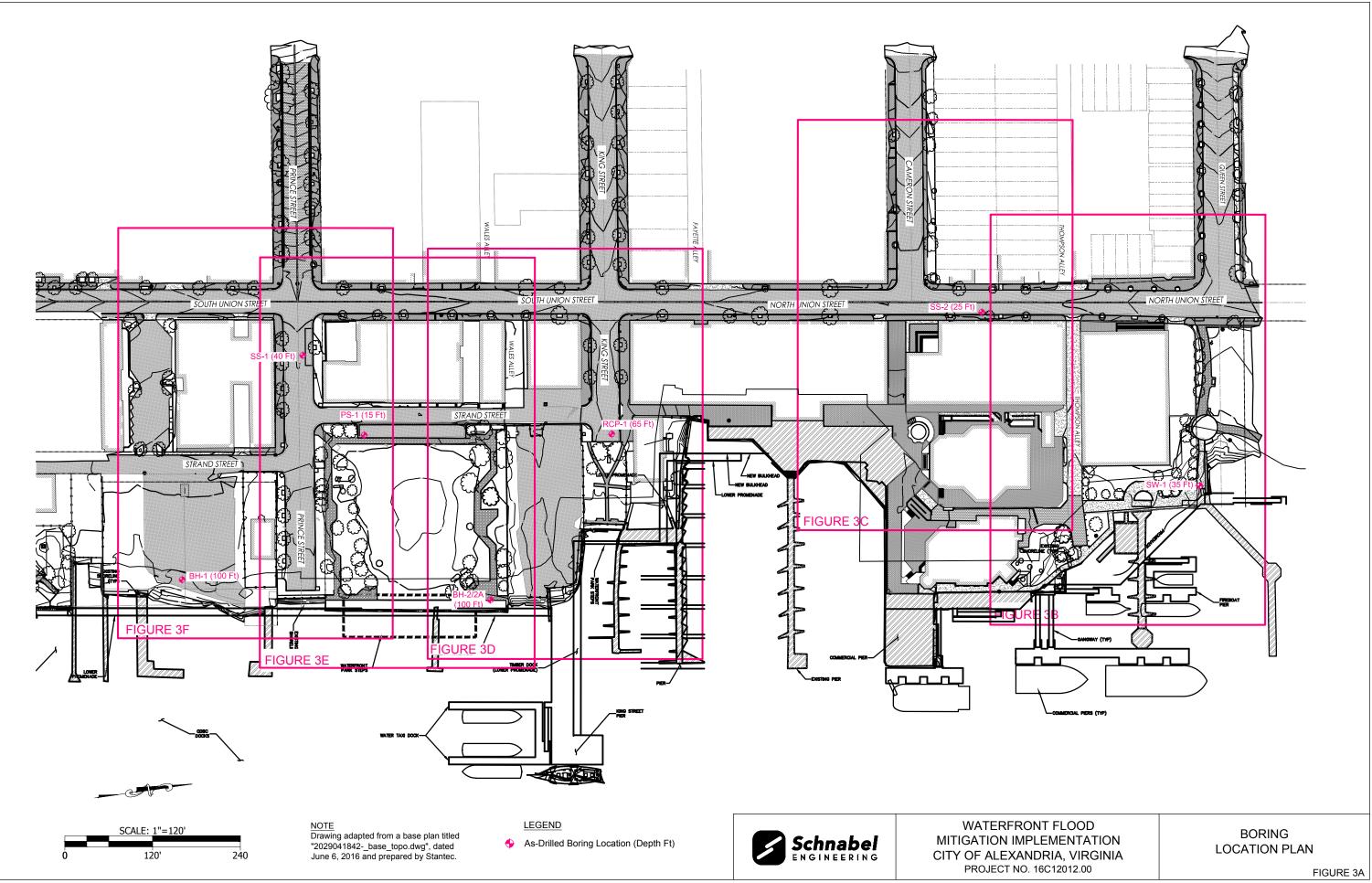
We have endeavored to complete the services identified herein in a manner consistent with that level of care and skill ordinarily exercised by members of the profession currently practicing in the same locality and under similar conditions as this project. No other representation, express or implied, is included or intended, and no warranty or guarantee is included or intended in this report, or other instrument of service.

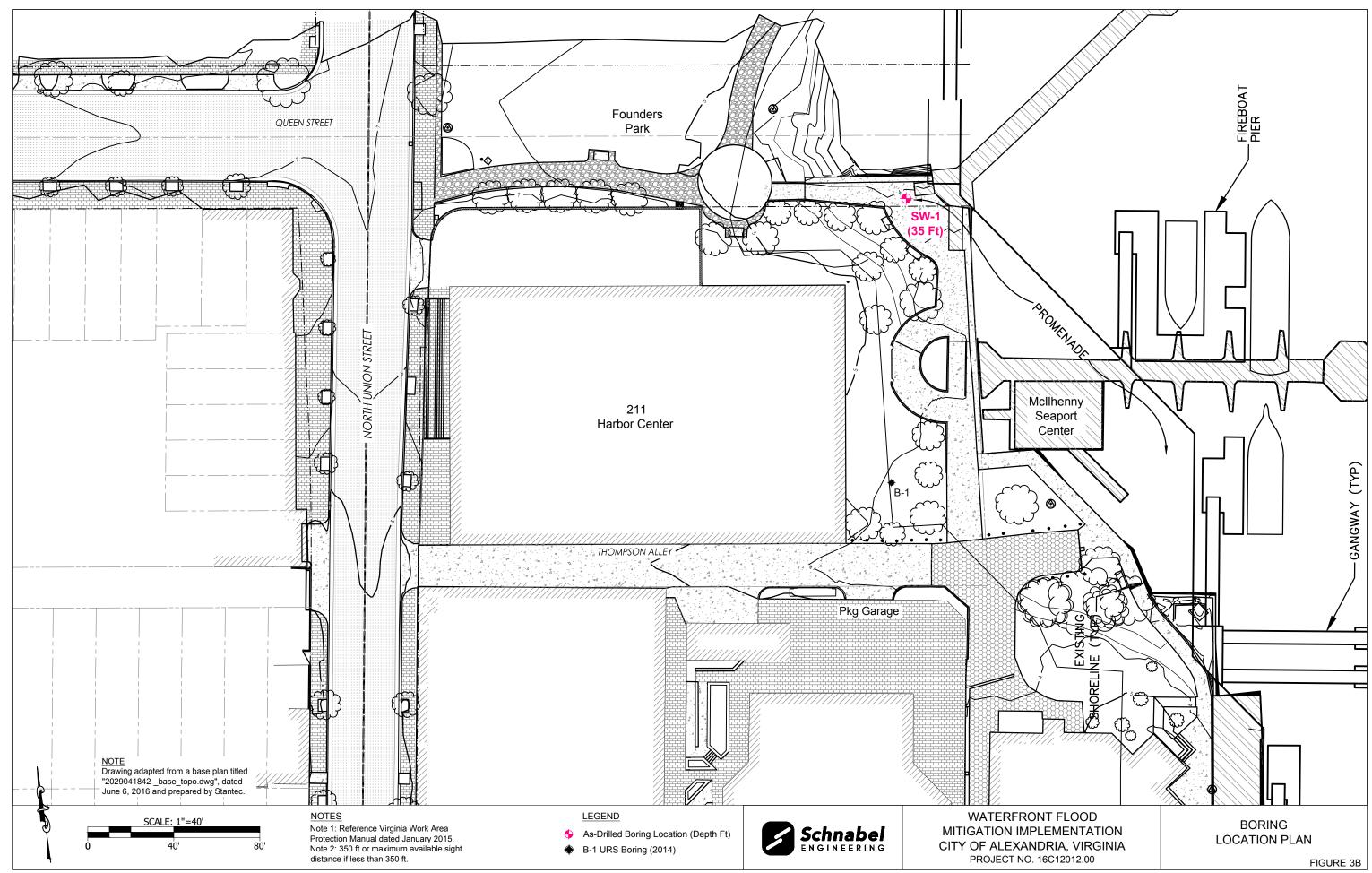

8.0 REFERENCES

Drake, A.A., Jr., and Froelich, A.J., (1986). "Geologic Map of the Annandale Quadrangle, Fairfax County, Virginia." U.S. Geological Survey Geologic Quadrangle Map GQ-1601. Scale 1:24,000.

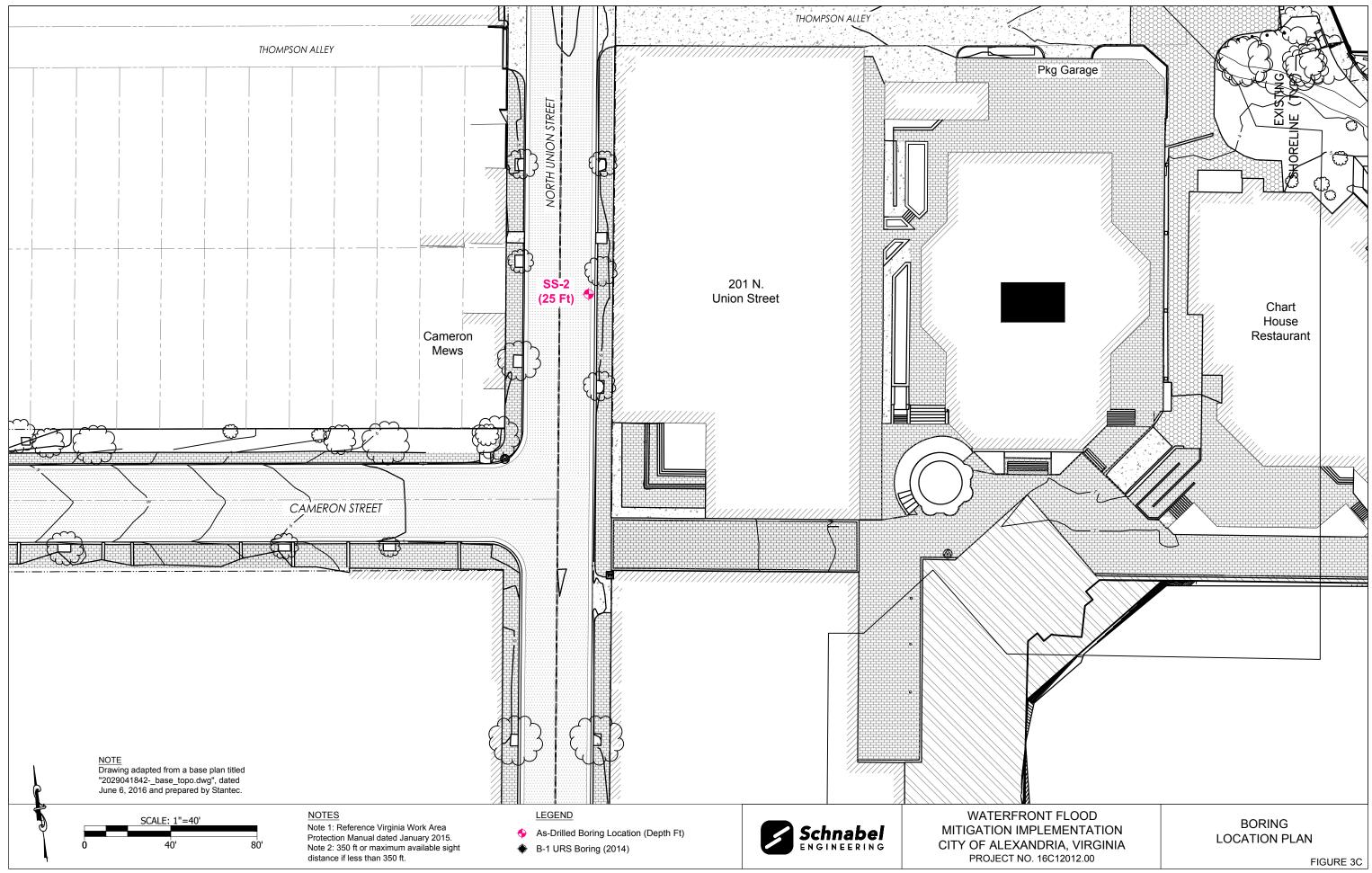

Fleming, A.H. (2015). "Geologic Atlas of the City of Alexandria, Virginia, and Vicinity," City of Alexandria, Virginia.

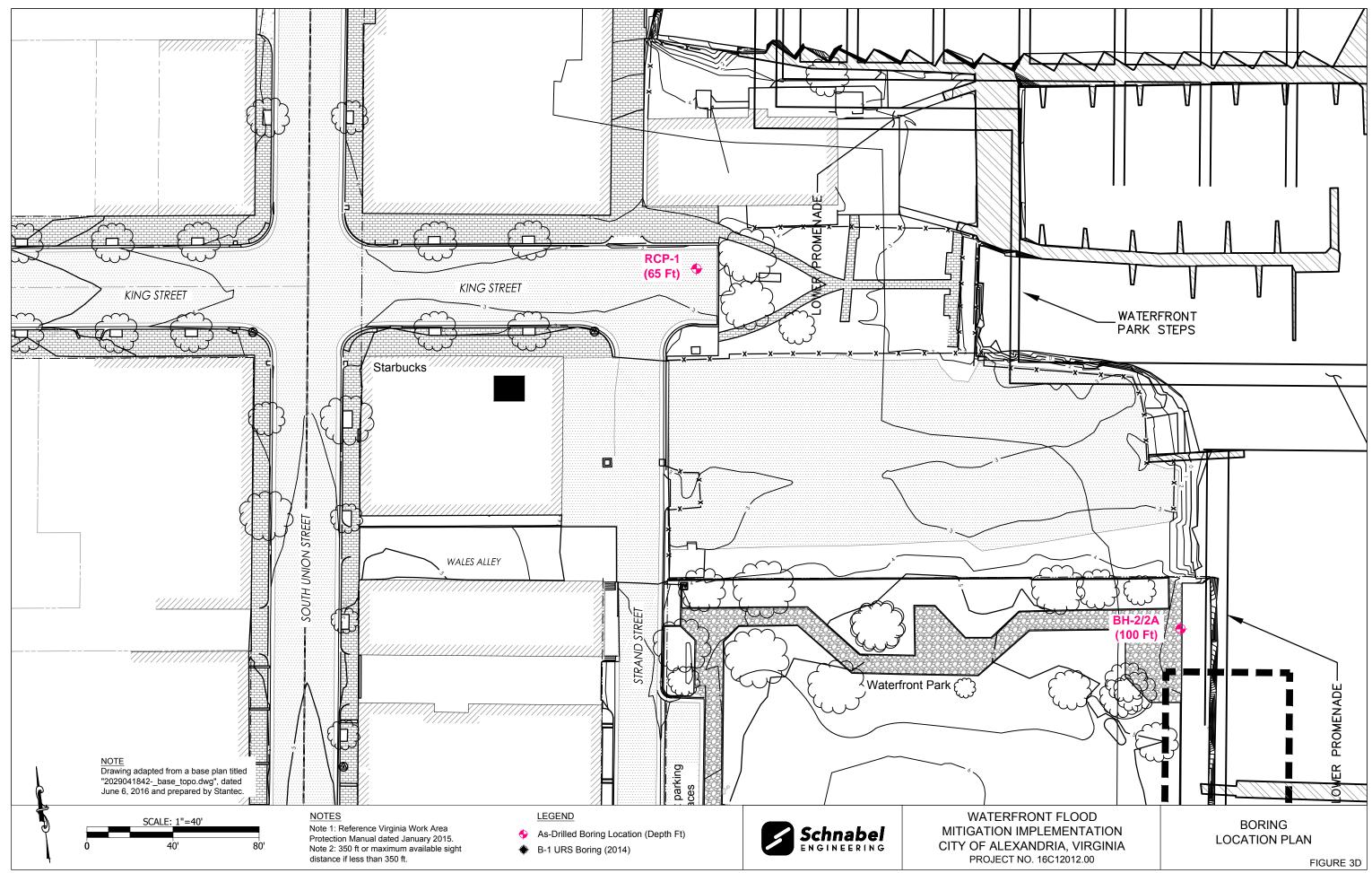
FIGURES

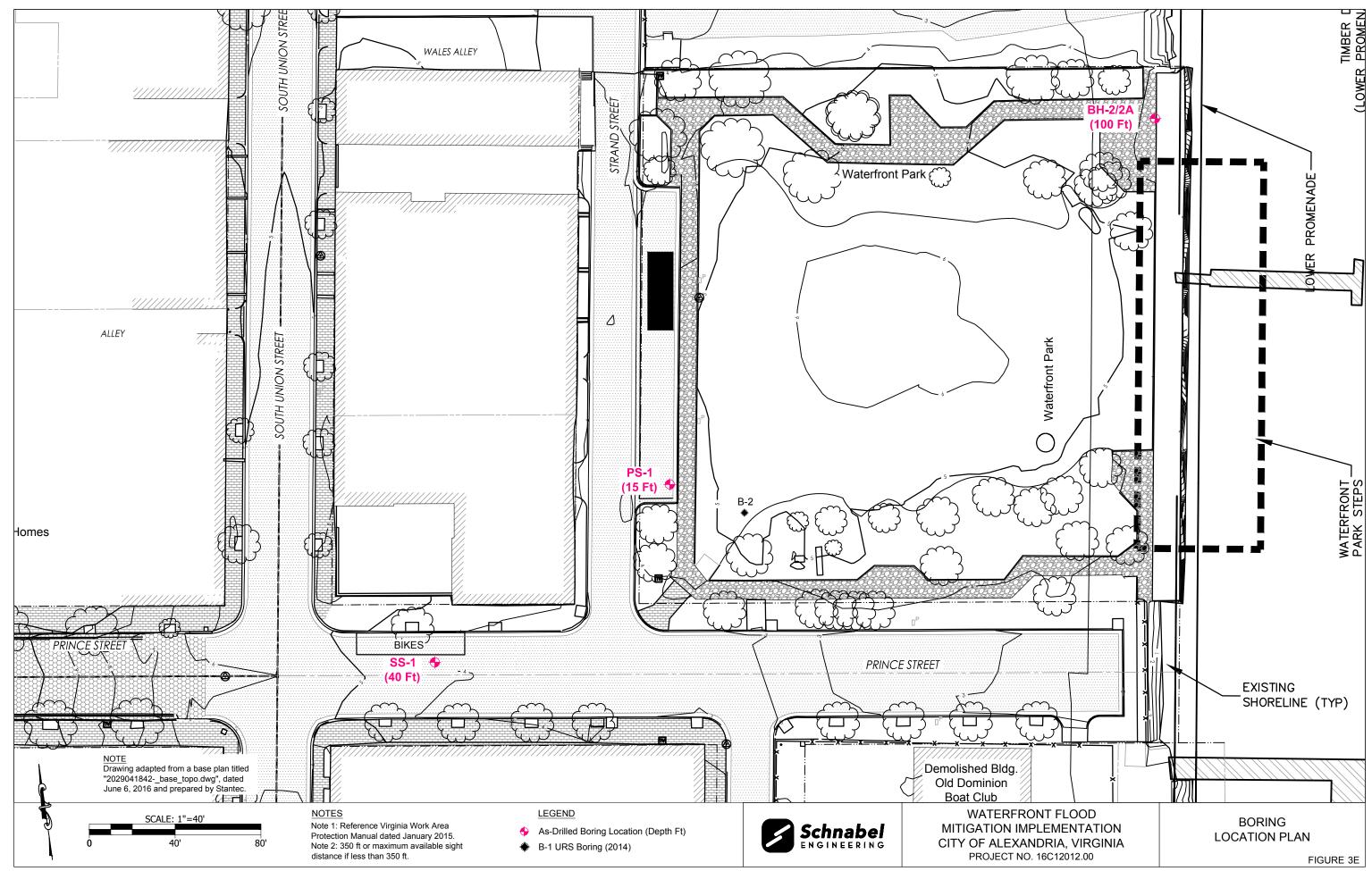

Figure 1: Figure 2: Figure 3A through F: Site Vicinity Map Alexandria Historic Shoreline Boring Location Plan



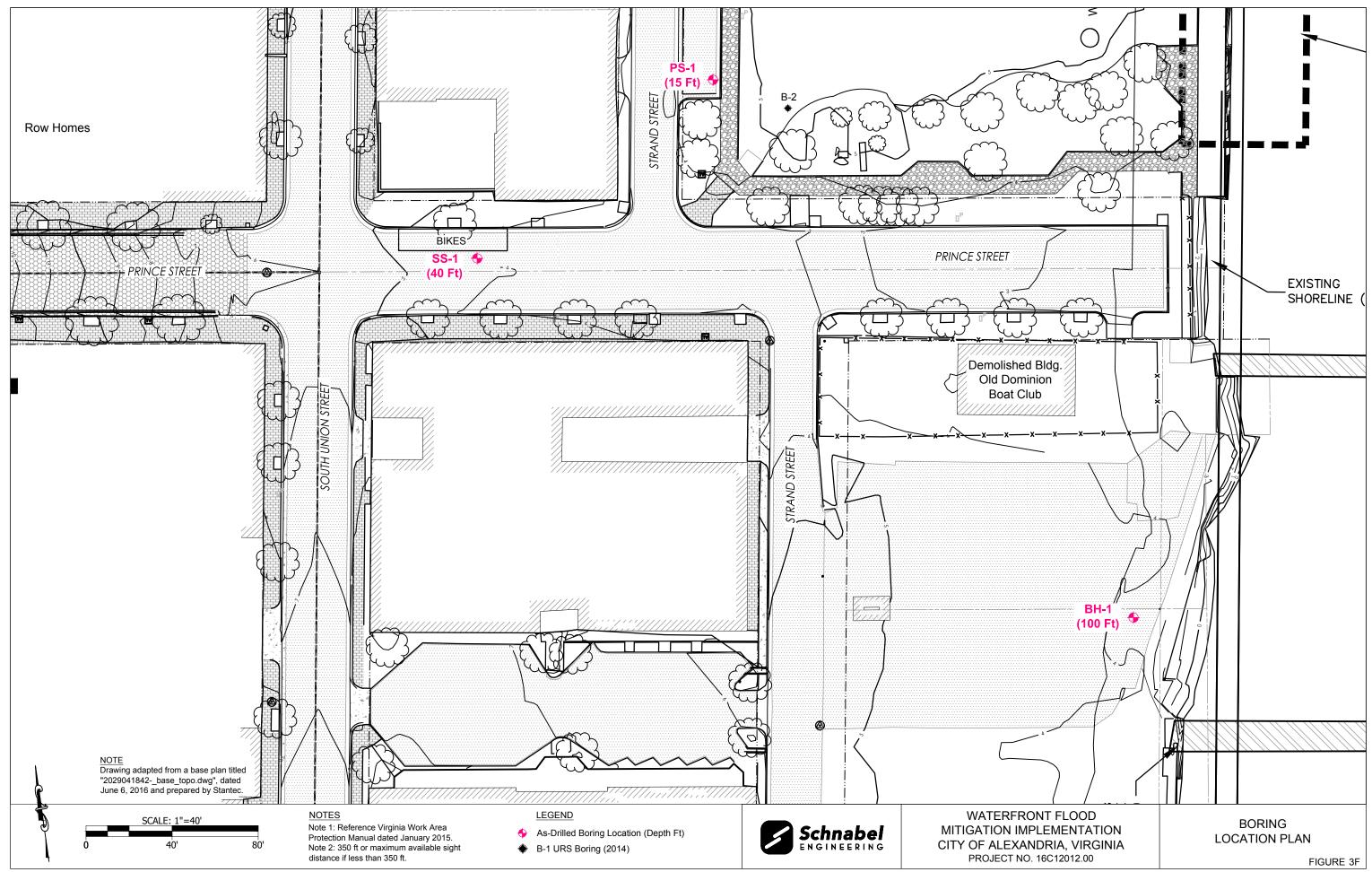
© Schnabel Engineering, 2016. All Rights Reserved.




© Schnabel Engineering 2016 All Rights Reserved



[©] Schnabel Engineering 2016 All Rights Reserved



[©] Schnabel Engineering 2016 All Rights Reserved

[©] Schnabel Engineering 2016 All Rights Reserved

[©] Schnabel Engineering 2016 All Rights Reserved

APPENDIX A

SUBSURFACE EXPLORATION DATA

Subsurface Exploration Procedures General Notes for Subsurface Exploration Logs Identification of Soil Boring Logs, BH-1, BH-2, BH-2A, PS-1, RCP-1, SS-1, SS-2, SW-1

SUBSURFACE EXPLORATION PROCEDURES

Test Borings – Hollow Stem Augers

The borings are advanced by turning an auger with a center opening of 3¼ or 4¼ inches. A plug device blocks off the center opening while augers are advanced. Cuttings are brought to the surface by the auger flights. Sampling is performed through the center opening in the hollow stem auger by standard methods after removal of the plug. Usually, no water is introduced into the boring using this procedure.

Test Borings – Mud Rotary

Drillers advanced the borings using mud rotary drilling techniques. The boring is advanced with a drill string consisting of a 3%-inch diameter tri-cone roller bit attached to A-sized drilled rods. Drilling fluid such as water or a bentonite clay water slurry is pumped through the drill rods to flush cuttings to the surface. The borehole remains full of drilling fluid to maintain the sides of the borehole. At the designated depth, the drillers removed the drill string and collect a sample using standard methods. When necessary, casing is installed to a depth necessary to prevent caving of the boring sidewalls. Water level data is indicated on the logs.

Standard Penetration Test Results

The Standard Penetration Test (SPT) is performed in the borings at regular depth intervals to collect soil samples. The numbers in the Sampling Data column of the boring logs represent SPT results. Each number represents the blows needed to drive a 2-inch O.D., 1%-inch I.D. split-spoon sampler 6 inches, using a 140-pound hammer falling 30 inches. The sampler is typically driven a total of 18 or 24 inches. The first 6 inches are considered a seating interval. The total of the number of blows for the second and third 6-inch intervals is the SPT "N value." The Standard Penetration Test is performed according to ASTM D1586.

The SPT samples were obtained using a hydraulically driven automatic trip hammer (ATH). Most correlations with SPT data are based on N-values collected with a safety hammer. The energy applied to the split-spoon sampler using the ATH is about 33 percent greater than that applied using the safety hammer, resulting in lower N-values. The hammer blows shown on the boring logs are uncorrected for the higher energy. However, we correct SPT N values for the higher energy when using N values in our analyses.

Soil Classification Criteria

The group symbols on the logs represent the Unified Soil Classification System Group Symbols (ASTM D2487) based on visual observation and limited laboratory testing of the samples. Criteria for visual identification of soil samples are included in this appendix. Some variation can be expected between samples visually classified and samples classified in the laboratory.

Disintegrated rock is defined as residual material with SPT N values between 60 blows per foot and refusal. Refusal is defined as an N value of 50 blows for a penetration of one inch or less.

Partially weathered rock (PWR) is defined as residual material with SPT N values between 100 blows per foot and refusal. Refusal is defined as an N value of 50 blows for a penetration of one inch or less.

Pocket Penetrometer Results

The values following "PP=" in the sampling data column of the logs represent pocket penetrometer readings. Pocket penetrometer readings provide an estimate of the unconfined compressive strength of fine-grained soils.

Boring Locations and Elevations

The surveyed locations and elevations of the as-drilled boring locations were provided to by Stantec. Surveyed boring locations were provided in the Virginia State Plane as shown on Figures 3A through 3F. Ground surface elevations at the boring locations are indicated on the boring logs. Locations and elevations should be considered no more accurate than the methods used to determine them. We understand that the elevations are provided using the NAVD88 vertical datum.

GENERAL NOTES FOR SUBSURFACE EXPLORATION LOGS

- Numbers in sampling data column next to Standard Penetration Test (SPT) symbols indicate blows required to drive a 2-inch O.D., 1^s/₆-inch I.D. sampling spoon 6 inches using a 140 pound hammer falling 30 inches. The Standard Penetration Test (SPT) N value is the number of blows required to drive the sampler 12 inches, after a 6-inch seating interval. The Standard Penetration Test is performed in general accordance with ASTM D1586.
- Visual classification of soil is in accordance with terminology set forth in "Identification of Soil." The ASTM D2487 group symbols (e.g., CL) shown in the classification column are based on visual observations.
- 3. Estimated water levels indicated on the logs are only estimates from available data and may vary with precipitation, porosity of the soil, site topography, and other factors.
- 4. Refusal at the surface of rock, boulder, or other obstruction is defined as an SPT resistance of 50 blows for 1 inch or less of penetration.
- 5. The logs and related information depict subsurface conditions only at the specific locations and at the particular time when drilled or excavated. Soil conditions at other locations may differ from conditions occurring at these locations. Also, the passage of time may result in a change in the subsurface soil and water level conditions at the subsurface exploration location.
- 6. The stratification lines represent the approximate boundary between soil and rock types as obtained from the subsurface exploration. Some variation may also be expected vertically between samples taken. The soil profile, water level observations and penetration resistances presented on these logs have been made with reasonable care and accuracy and must be considered only an approximate representation of subsurface conditions to be encountered at the particular location.
- 7. Key to symbols and abbreviations:

	S-1, SPT 5+10+1	Sample No., Standard Penetration Test Number of blows in each 6-inch increment
SH	SH-1, SH Rec=24", 100%	Sample No., 2" or 3" Shelby Tube Sample Recovery in inches, Percent Recovery
LL	Liquid	Limit
MC	Moistu	ire Content (percent)
PL	Plastic	c Limit

1 L	
PP	Pocket Penetrometer Reading (tsf)
%Passing#200	Percent by weight passing a No. 200 Sieve

IDENTIFICATION OF SOIL

I. DEFINITION OF SOIL GROUP NAMES (ASTM D2487)

SYMBOL GROUP NAME

Coarse-Grained Soils	Gravels –	Clean Gravels	GW	WELL GRADED
More than 50% retained	More than 50% of coarse	Less than 5% fines		GRAVEL
on No. 200 sieve	fraction		GP	POORLY GRADED
	retained on No. 4 sieve			GRAVEL
	Coarse, ¾" to 3"	Gravels with fines	GM	SILTY GRAVEL
	Fine, No. 4 to ¾"	More than 12% fines	GC	CLAYEY GRAVEL
	Sands – 50% or more of coarse	Clean Sands	SW	WELL GRADED
	Fraction passes No. 4 sieve	Less than 5% fines		SAND
	Coarse, No. 10 to No. 4		SP	POORLY GRADED
	Medium, No. 40 to No. 10			SAND
	Fine, No. 200 to No. 40	Sands with fines	SM	SILTY SAND
		More than 12% fines	SC	CLAYEY SAND
Fine-Grained Soils	Silts and Clays –	Inorganic	CL	LEAN CLAY
50% or more passes	Liquid Limit less than 50		ML	SILT
the No. 200 sieve	Low to medium plasticity	Organic	OL	ORGANIC CLAY
				ORGANIC SILT
	Silts and Clays –	Inorganic	СН	FAT CLAY
	Liquid Limit 50 or more		MH	ELASTIC SILT
	Medium to high plasticity	Organic	OH	ORGANIC CLAY
				ORGANIC SILT
Highly Organic Soils	Primarily organic matter, dark in c	color and organic odor	PT	PEAT

II. DEFINITION OF SOIL COMPONENT PROPORTIONS (ASTM D2487)

			Examples
Adjective	GRAVELLY	>30% to <50% coarse grained	GRAVELLY LEAN CLAY
Form	SANDY	component in a fine-grained soil	
	CLAYEY SILTY	>12% to <50% fine grained component in a coarse-grained soil	SILTY SAND
"With"	WITH GRAVEL WITH SAND	>15% to <30% coarse grained component in a fine-grained soil	FAT CLAY WITH GRAVEL
	WITH GRAVEL WITH SAND	>15% to <50% coarse grained component in a coarse-grained soil	POORLY GRADED GRAVEL WITH SAND
	WITH SILT	>5% to <12% fine grained	POORLY GRADED SAND WITH SILT
	WITH CLAY	component in a coarse-grained soil	

III. GLOSSARY OF MISCELLANEOUS TERMS

SYMBOLS	Unified Soil Classification Symbols are shown above as group symbols. A dual symbol "-' indicates the soil belongs to two groups. A borderline symbol "/" indicates the soil belongs to two possible groups.
FILL	Man-made deposit containing soil, rock and often foreign matter.
PROBABLE FILL	Soils which contain no visually detected foreign matter but which are suspect with regard to origin.
DISINTEGRATED ROCK (DR)	Residual materials with a standard penetration resistance (SPT) between 60 blows per foot and refusal. Refusal is defined as an SPT of 100 blows for 2" or less penetration.
PARTIALLY WEATHERED	Residual materials with a standard penetration resistance (SPT) between 100 blows per
ROCK (PWR)	foot and refusal. Refusal is defined as an SPT of 100 blows for 2" or less penetration.
BOULDERS & COBBLES	Boulders are considered rounded pieces of rock larger than 12 inches, while cobbles range from 3 to 12-inch size.
LENSES	0 to ¹ / ₂ -inch seam within a material in a test pit.
LAYERS	$\frac{1}{2}$ to 12-inch seam within a material in a test pit.
POCKET	Discontinuous body within a material in a test pit.
MOISTURE CONDITIONS	Wet, moist or dry to indicate visual appearance of specimen.
COLOR	Overall color, with modifiers such as light to dark or variation in coloration.

		Schnabel TEST BORING	Project: Ale	exandria	a Wate	erfront FI	ood Miti	gation			Borin	ng Nur	nber:		BH-1
1		ENGINEERING LOG										ractN t:1 c		16C1201	2
Cont	racte	or: Free State Drilling, Inc.								Ground	water O				
		Frederick, Maryland								Date	Time		Depth	Casing	Caved
		or Foreman: R. Stidham				Er	counte	red 🔤	Z	8/16			4.0'	4.0'	
		Representative: J. Spencer					ompleti	ion 🛛	,	8/17			14.0'	60.5'	
		nt: CME-55 (Truck)					ompieu		<u> </u>	0/17			14.0	00.5	
Meth	00:	4-1/4" I.D. Hollow Stem Auger													
		Type: Auto Hammer (140 lb)	4740												
		Started: 8/16/16 Finished: 8/ ft East: 30 ft	17/16						_						
		ite System: VA State Plane (N)													
		Surface Elevation: 3.5 (ft)	Total Dept	h 10	0 0 ft										
					0.0 11										
DEPT (ft)		MATERIAL DESCRIPTIC	N	SYME	BOL	ELEV (ft)	STRA					т	ESTS	RE	MARKS
(,						()		DEPT	H	DATA	`				
		0.0 - 8.0 ft: FILL, sampled as silt with gravel, fine to coarse graine							\mathbb{N}	S-1, SS 7+10+6+5					
		moist, gray, contains wood fragm	nents			-			\mathbb{N}	REC=14",	58%				
	-	2.0 ft: Change: wet, brown and g	ıray,				1		Λ	S-2, SS 4+2+2+18			15.5%		
	-	contains root hairs	_				1		ŧΧ	REC=15",	63%	6100	tivity = Ohms-cr	n	
	-	4.0 ft: Change: gray	¥	FILL			-		$\left(\right)$	S-3, SS		Redox mv	k = -178		
	_						-	- 5 -	łΧ	8+3+3+4 REC=14",		pH = 1	10.67		
	_						-		(
		6.0 ft: Change: no root hairs						L.	N	S-4, SS 9+6+7+7		MC =	13.2%		
						4.5			\mathbb{N}	REC=13",	54%				
8.0	, Τ	8.0 - 15.0 ft: FILL, sampled as sa lean clay; moist, dark gray, conta				-4.5]		\mathbb{N}	S-5, SS 3+3+3+2		PP =	0.00 tsf		
		gravel, and mica	1115				A		1Å	REC=13",	54%				
	_	10.0 ft: Change: contains rock fr	agments				1	- 10 -	()	S-6, SS		PP =	0.00 tsf		
	-		-	FILL			-		łХ	2+1+1/12" REC=10",					
	_			FILL			-		\downarrow						
	_						-								
2-7			Ţ					L .							
						- 14 F		45							
15.0 2	,	15.0 - 18.5 ft: FILL, sampled as			\bigotimes	11.5-]	- 15 -	\mathbb{N}	S-7, SS 1+1+1/12"		PP =	0.00 tsf		
	-	moist, gray, contains brick fragm	ตาเอ	E 11 1			1	F -	1/\	REC=16",					
	-			FILL			1		ľ	×					
					×		Ł		-						
] 18.5	° -[18.5 - 28.5 ft: SILT; moist, gray				-15.0	-		\mathbb{N}	S-8, SS WOH/12"-		LL = 4 PI = 1			
							-	- 20 -	\square	REC=18",	100%	MC =	52.3%		
								L.				PP =	0.00 tsf		
							1		1						
Ę	-			ML			B								
5	-				-		1		łV	S-9, SS WOH/18"		PP =	0.00 tsf		
	_				-		-	- 25 -	$\frac{1}{1}$	REC=18",	100%				
15.C 18.5	_						4	Ļ .							
0								L.							
<u>'</u>		(continued)													

(continued)

5	Schnabel TEST BORING LOG	ct: Alexandria Wat	erfront Fl	ood Miti	gation	-	Boring Number: BH-1 Contract Number: 16C12012 Sheet: 2 of 3				
DEPTH (ft)	MATERIAL DESCRIPTION	SYMBOL	ELEV (ft)	STRA TUM	SA DEPTH	MPLING	TESTS	REMARKS			
- 28.5 - - -	28.5 - 43.5 ft: ELASTIC SILT; moist, gray, contains wood	ML	 	-	 - 30 	S-10, SS WOH/18" REC=18", 10	LL = 50 PI = 20 MC = 54.3% % Passing #200 = 98.6 PP = 0.00 tsf				
-		мн	- ·	-		S-11, SS WOH/18" REC=18", 10					
- - -			- ·	-	 - 40 	S-12, SS WOH/18" REC=18", 10	PP = 0.00 tsf				
43.5 _ 	43.5 - 48.5 ft: CLAYEY SAND, fine to coarse grained sand; moist, dark gray, contains mica	sc	 	- - B -	 - 45 - 	S-13, SS WOH+1+1 REC=18", 10	00%				
48.5 _	48.5 - 53.5 ft: SANDY LEAN CLAY; moist, gray, contains wood fragments, contains mica	CL		-		S-14, SS WOH/18" REC=18", 10	PP = 0.50 tsf				
53.5 	53.5 - 58.5 ft: CLAYEY SAND, fine to medium grained sand; moist, gray, probable ALLUVIAL material, contains fine rounded gravel and mica	SC	-50.0 - 	-	55 - 55 	S-15, SS WOH/12"+2 REC=18", 10	00%				
58.5 _	58.5 - 60.5 ft: CLAYEY SAND, fine to medium grained sand; moist, gray and brown, contains organics	SC	-55.0 	-	60 -	S-16, SS 3+3+4 REC=15", 83	3%				
60.5 _	60.5 - 63.0 ft: ELASTIC SILT; moist, reddish brown, contains, contains approximetely 10% sand	мн	-57.0 -			UD-1, SH REC=21", 88	MC = 32.5% % Passing #200				
63.0 - -	63.0 - 68.5 ft: SANDY LEAN CLAY; moist, gray and reddish brown, contain mica	s CL	59.5 -			S-17, SS 3+6+7 REC=15", 83	= 90.5 MC = 34.3% PP = 2.00 tsf				

TEST BORING LOG; P:DRAFT LOGS 2015_02_16.GPJ; D: L:GINT LIBRARY _2015_02-16 (NCO).GLB; Print:10/6/16

(continued)

5	Schnabel BORING ENGINEERING LOG	Del BORING							Boring Number: BH- Contract Number: 16C12012				
EPTH (ft)	MATERIAL DESCRIPTION	SYMBOL	MBOL ELEV (ft)		SAMPLING			Shee	et: 3 of 3 TESTS	REMARKS			
-		CL		-	- 65 - - ·	-							
68.5 – – –	68.5 - 73.5 ft: SANDY LEAN CLAY WITH GRAVEL; moist, gray and reddish brown, contains mica	CL	-65.0 	-	- 70 - - 70 -	1 X I	S-18, SS 2+2+3 REC=18", 10	00%	MC = 37.7% PP = 2.50 tsf Resistivity = 900 Ohms-cm Redox = 77 mv pH = 5.4				
- 73.5 - -	73.5 - 83.5 ft: SANDY LEAN CLAY; moist, gray and reddish brown, contains mica		-70.0	-	- 75 - - 75 -	ואר	S-19, SS 5+8+4 REC=18", 10	00%	PP = 2.50 tsf				
-		CL			- 80 - - 80 -	ואר	S-20, SS 5+6+11 REC=15", 83	8%	PP = 4.00 tsf				
- 33.5 _ -	83.5 - 88.5 ft: FAT CLAY; gray and reddish brown, contains mica	СН	80.0 	_ D 		1 X I	S-21, SS 5+10+11 REC=15", 83	8%	LL = 90 PI = 61 MC = 37.4% % Passing #200 = 96.1 PP = 4.50 tsf				
- 38.5 _ 	88.5 - 100.0 ft: SANDY FAT CLAY; moist, bluish gray and brown, contains mica		85.0 	-	- 90 - - 90 -	1 X I	S-22, SS 11+12+14 REC=18", 10	00%	PP = 4.50 tsf				
		сн		-		1 X I	S-23, SS 5+9+12 REC=16", 89	9%	PP = 4.50 tsf				
- -)0.0				-			S-24, SS 10+15+20 REC=18", 10	00%	PP = 4.50 tsf				

TEST BORING LOG; P:DRAFT LOGS 2015 02 16.GPJ; D: L:GINT LIBRARY 2015 02-16 (NCO).GLB; Print:10/6/16

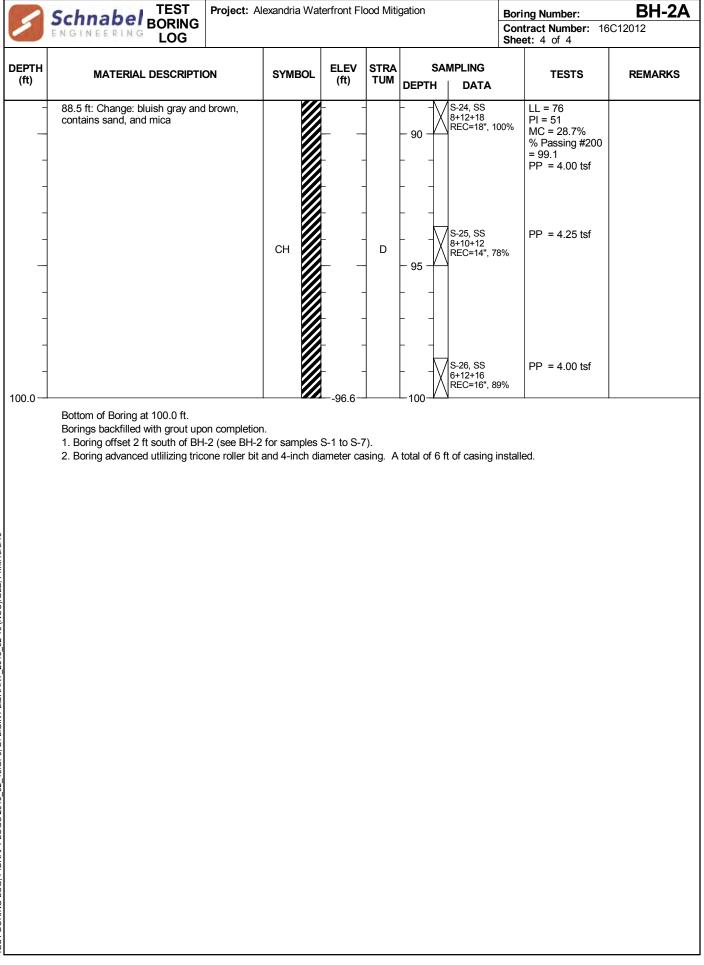
5	Schnabel BORING	Project: Ale	exandria	Waterfr	ront Flo	ood Miti	gation			Con	tract	umber: Number: of 1	16C1201	BH-2
Contract	tor: Free State Drilling, Inc. Frederick, Maryland									water (Obse	rvations		
Contract	tor Foreman: R. Stidham								Date	Tim	e	Depth	Casing	Caved
	I Representative: J. Spencer				En	counte	red Σ	-	8/8			3.0'	2.0'	
	ent: CME-55 (Truck)				Co	ompleti	on 🛛	2	8/8			10.5'	14.0'	
•••	4-1/4" I.D. Hollow Stem Auger							_	0/44			0.51		
	Ũ				Απ	er Drill	ing <u>v</u>	-	8/11			2.5'		
lammer	Type: Auto Hammer (140 lb)													
Dates	Started: 8/8/16 Finished: 8/8	/16												
	ate System: VA State Plane (N)													
Ground	Surface Elevation: 3.4 (ft)	Total Dep	tn: 15.5	o ft										
DEPTH (ft)	MATERIAL DESCRIPTIC	MATERIAL DESCRIPTION SYMBOL			LEV (ft)	STRA TUM			AMPLING		TESTS		REMARKS	
-	0.0 - 2.0 ft: FILL, sampled as sar clay with gravel; moist, light brow crushed stone walking path		FILL			-		X	S-1, SS 3+6+6+5 REC=16",	67%				
2.0 -	2.0 - 4.0 ft: FILL, sampled as poo graded sand with gravel; moist, g		FILL		1.4 -	-			S-2, SS 3+5+47 REC=13",	72%	мс	= 11.3%	2.0 ft: of the	Wood in ti spoon
4.0 -	4.0 - 6.0 ft: FILL, sampled as poor graded sand with silt and gravel; gray, wood	orly moist,	FILL		-0.6 -	-		X	S-3, SS 10+16+12 REC=20",			= 12.4% assing #200).4		
6.0 -	6.0 - 10.0 ft: FILL, sampled as pr graded sand with gravel; moist, d				-2.6 -			\mathbb{N}	S-4, SS 4+4+4+7 REC=5", 2	21%				
-			FILL		-	A		$\left \right\rangle$	S-5, SS 3+3+21+6 REC=5", 2				8.0 - 1 Wood	0.0 ft: in spoon
10.0	10.0 - 14.0 ft: FILL, sampled as graded sand; wet, dark gray	poorly 👤	FILL		-6.6		- 10 - 		S-6, SS 6+3+2+2 REC=5", 2	21%	мс	= 23.3%		
- 14.0 -	14.0 - 15.5 ft: FILL, sampled as (alastic		× -	- 10.6 -	-		Х	S-7, SS		LL =	- 51		
	silt with sand; wet, dark gray, cor gravel		FILL		 12.1	-	- 15 -		1+1+1 REC=5", 2	250%	PI =			

Bottom of Boring at 15.5 ft. Auger refusal at 14.0 ft.

Boring backfilled with bentonite upon completion. Lead auger sheared off in borehole. Top of the auger is approximately 5 ft below ground surface. Auger abandoned in borehole.

	Schnabel BORING	lexandri	a Waterf	ront Fl	ood Mitig	gation		Borina	Number:	E	3H-2A
1	ENGINEERING LOG	Contract Number: 16C12012 Sheet: 1 of 4									
Contrac	tor: Free State Drilling, Inc. Frederick, Maryland						Ground Date	dwater Obs	ervations Depth	Casing	Caved
Contrac	tor Foreman: R. Stidham	En	ncounter	ed ∑	8/8		3.0'	2.0'			
	el Representative: J. Spencer										
	ent: CME-55 (Truck) : Mud Rotary			C	ompleti	on <u></u>	8/15	10:45 AM	12.0'	60.0'	
Metriou.											
Hamme	r Type: Auto Hammer (140 lb)										
Dates	Started: 8/11/16 Finished: 8/15/16										
) ft East: 240 ft										
	nate System: VA State Plane (N) Surface Elevation: 3.4 (ft) Total De	oth: 10	00 0 ft								
DEPTH											
(ft)	MATERIAL DESCRIPTION	SYM		LEV (ft)	STRA TUM	DEPTH	AMPLING		TESTS	RE	MARKS
-	0.0 - 15.0 ft: Auger probe, refer to BH-2 for material description			-	-					0.0 - 1 sample	5.0 ft: No e
-				-	-						
-	<u> </u>	<u>z</u>			-						
_				-	_						
_						- 5 -					
				-]						
0/6/16				-	1						
GLB; Print:10/6/16				-	1						
					-	- 10 -					
				-	-						
	<u> </u>	2		-	A						
- 2015					-						
- BKAK				-	-						
15.0	15.0 - 18.5 ft: FILL, sampled as sandy fat		-	11.6-	-	- 15 -	/S-8, SS	M	C = 46.1%		
	clay; moist, gray, contains wood fragments			-	-		S-8, SS WOH/24" REC=8",	220/	sistivity = 00 Ohms-cr	n	
16.GP		FILL		-	-	- 4	1	Re	edox = 33 mv = 6.48		
- 20				-	4						
18.5	18.5 - 38.5 ft: FILL, sampled as elastic	-		15.1			S-9, SS WOH/18"		= 50		
	silt; moist, gray, contains wood fragments			_		- 20 -	REC=18"	1000/	= 21 C = 60.0%		
P:DRA						20					
		FILL		-	1	- 1					
TEST BORING LOG: P:DRAFT LOGS 2015_02_16.GPJ; D: L:GINT LIBRARY_2015_02-16 (NCO) 8 				-	1						
- BC				-	1						
≝∟	23.5 - 25.0 ft: contains brick fragments	1	\bowtie				\leq				

C 2


(continued)

5	Schnabel BORING ENGINEERING LOG	lexandria Wat	erfront FI	ood Miti	gation		Boring Number: Contract Number: 16	BH-2A
	ENGINEERING LOG	1					Sheet: 2 of 4	
DEPTH (ft)	MATERIAL DESCRIPTION	SYMBOL	ELEV (ft)	STRA TUM	SAI DEPTH	MPLING DATA	TESTS	REMARKS
25.0				-	- 25 -	S-10, SS WOH/12"+1 REC=8", 449	6 PP = 0.00 tsf	
-			- ·	-		S-11, SS WOH/18" REC=0", 0%		28.5 ft: Empty jar
-	30.5 - 33.0 ft: contains wood fibers	FILL		-		S-12, SS WOH/18" REC=18", 10	0%	
33.0 -	33.0 - 38.5 ft: wet, grayish brown		29.6 ·	A		UD-1, SH Pushed 24 in REC=23.5", 9	LL = 54 PI = 23 MC = 57.6% % Passing #200	
				-	- 35 -	S-13, SS WOH/18" REC=18", 10	= 95.7	
- 38.5	37.0 ft: Change: contains brick		- · - ·35.1	-				
-	38.5 - 43.5 ft: FILL, sampled as lean clay; moist, grayish brown, contains wood fiber and brick	FILL		-	- 40 -	S-14, SS WOH/18" REC=12", 67	%	
- 43.5			- · - ·40.1	-		0.45.00		
	43.5 - 53.5 ft: LEAN CLAY; moist, grayish brown, contains wood fiber		 		- 45 -	S-15, SS WOH/18" REC=8", 44%	MC = 60.1%	
-	47.0 ft: Change: no wood fiber	CL	- ·					
-			 	- B -	 - 50 - /	S-16, SS WOH/18"+1 REC=16", 67	%	
53.5	53.5 - 58.5 ft: SANDY ORGANIC CLAY; moist, grayish brown, contains wood		 	-		S-17, SS WOH+1+2+2	LL = 52 PI = 24	
	fibers, shells	OH (1)(1)			- 55 -	REC=24", 10	MC = 50.5% % Passing #200 = 52.9 PP = 0.50 tsf	

TEST BORING LOG; P:DRAFT LOGS 2015_02_16.GPJ; D: L:GINT LIBRARY_2015_02-16 (NCO), GLB; Print:10/6/16

3	Schnabel BORING ENGINEERING LOG	Alexandria	a Wat	terfront Fl	ood Miti	gation			Con	ing Number: tract Number: 16C et: 3 of 4	BH-2A
DEPTH (ft)	MATERIAL DESCRIPTION	SYME	BOL	ELEV (ft)	STRA TUM	DEPT		MPLING		TESTS	REMARKS
-		он			_	_					
58.5 - 	58.5 - 63.5 ft: LEAN CLAY WITH SAND; moist, grayish brown, contains wood fibers	CL		-55.1 	- - B -	- 60 - -		S-18, SS WOH/18"+1 REC=24", 10	00%	PP = 0.50 tsf	
- 63.5 -	63.5 - 68.5 ft: POORLY GRADED SAND WITH CLAY; wet, gray with speckles of black, trace gravel rounds			-60.1	-	65 -		S-19, SS 4+5+6+9 REC=18", 75	5%	MC = 20.0% % Passing #200 = 10.3	
-		SP-SC			- c	-	- - - -				
68.5 - - -	68.5 - 73.5 ft: FAT CLAY; moist, red and gray	СН		-65.1 	-	- - 70 - -		S-20, SS 3+5+10 REC=15", 83	8%	LL = 75 PI = 51 MC = 29.9% % Passing #200 = 90.4 PP = 2.50 tsf	
- 73.5 - - -	73.5 - 83.5 ft: SANDY LEAN CLAY; moist, gray			-70.1	-	- - - 75 - -		S-21, SS 7+8+13 REC=12", 67	7%	MC = 31.5% PP = 3.00 tsf Resistivity = 800 Ohms-cm Redox = 135 mv pH = 4.1	
-		CL			- D -	- - - 80 -	-	S-22, SS 6+10+13 REC=13", 72	2%	PP = 3.75 tsf	
- 83.5 -	83.5 - 100.0 ft: FAT CLAY; moist, gray and red, contains sand	СН		80.1	-	- - - 85 -		S-23, SS 8+12+16 REC=18", 10	00%	PP = 4.25 tsf	
-					-	_					

TEST BORING LOG; P:DRAFT LOGS 2015_02_16.GPJ; D: L:GINT LIBRARY_2015_02-16 (NCO).GLB; Print:10/6/16

	Schnabel BORING Project: AI	exandria	a Wate	erfront F	lood Miti	gation			Bori	ng N	umber:		PS-1
1	LOG								Con	tract	Number: of 1	16C1201	2
Contrac	ctor: Free State Drilling, Inc. Frederick, Maryland						I				rvations	0	0
Contrac	ctor Foreman: R. Stidham						+	Date	Tim	e	Depth	Casing	Caved
Schnab	el Representative: J. Spencer			E	ncounte	red $\overline{\Sigma}$	-	8/18			8.0'	8.0'	
Equipm	ent: CME-55 (Truck)			C	completi	on 🗵	2	8/18			8.5'	13.5'	
Method	: 3-1/4" I.D. Hollow Stem Auger			Ca	ising Pu	lled <u>V</u>	7	8/18			4.0'		8.5'
lamme	r Type: Auto Hammer (140 lb)												
Dates	Started: 8/18/16 Finished: 8/18/16												
North: 0) ft East: 150 ft												
Coordin	nate System: VA State Plane (N)						-						
Ground	Surface Elevation: 3.8 (ft) Total Dep	th: 15	5.0 ft										
DEPTH (ft)	MATERIAL DESCRIPTION	SYMI	BOL	ELEV (ft)	STRA TUM	S DEPTH		MPLING			TESTS	RE	MARKS
0.4	0.0 - 0.4 ft: FILL, sampled as asphalt; 4	FILL		3.4			V	S-1, SS 19+25+7			= 9.1% sistivity =		
2.0 -	0.4 - 2.0 ft: FILL, sampled as silty sand with gravel, medium to coarse grained sand; moist, gray	FILL		- - 1.8				REC=15", S-2, SS		Rec mv	0 Ohms-cn lox = -243	n	
- 4.0	2.0 - 4.0 ft: FILL, sampled as clayey sand with gravel, fine to coarse grained sand; moist, gray, contains concrete fragments	FILL		0.2	-		X	8+9+10+4 REC=14",		рн	= 12.03		
	4.0 - 6.0 ft: FILL, sampled as sandy fat clay; moist, black and red, contains brick fragments	FILL		-0.2	-	- 5 -	X	S-3, SS 1+1+4+3 REC=8", 3	3%	PP	= 0.00 tsf		
6.0 -	6.0 - 8.0 ft: FILL, sampled as clayey sand, fine to coarse grained sand; gray and light brown, contains brick fragments, fine gravel, chemical odor □	FILL		2.2 -	- - - A			S-4, SS 6+4+6+5 REC=7", 2	9%				
8.0 -	8.0 - 10.0 ft: FILL, sampled as lean clay with sand; moist, light gray, contains gravel			-4.2	-		X	S-5, SS 1+1+1+1 REC=24",	100%	PI = MC	= 28 : 10 = 23.1% Passing #20	0	
10.0	10.0 - 13.5 ft: FILL, sampled as poorly graded gravel with clay and sand; wet, gray, fine to coarse gravel			6.2 - -	-	- 10 - 	X	S-6, SS 3+9+5+9 REC=24",	100%	= 7			
-	-	FILL		- - -9.7	-								
13.5 - 15.0	13.5 - 15.0 ft: FILL, sampled as poorly graded sand, fine to coarse grained sand; wet, gray, contains shell fragments,	FILL		-			X	S-7, SS 1+1+1 REC=18",	100%		= 24.2% Passing #20 0	0	
15.0—	gravel, chemical odor Bottom of Boring at 15.0 ft. Boring terminated at selected depth. Boring b	backfilled	d with	−-11.2- grout up	on comp	⊢ 15 –	, ,	<u>v</u>					

5	Schnabel BORING ENGINEERING LOG	ect: Ale	exandria	a Wate	erfront FI	ood Miti	igation			Cont	ract	umber: Number: of 3		RCP-1
Contrac	tor: Free State Drilling, Inc.								Ground					
Controo	Frederick, Maryland tor Foreman: R. Stidham								Date	Tim	e	Depth	Casing	Caved
	el Representative: J. Smith				En	icounte	red <u>T</u>	Z	8/19			9.0'	15.0'	
	ent: CME-55 (Truck)				С	ompleti	ion 🔤	Z	8/19			7.5'	25.0'	
• •	: Mud Rotary							-	0.10				_0.0	
method														
Hammo	r Type: Auto Hammer (140 lb)													
	Started: 8/19/16 Finished: 8/19/16	3												
) ft East: 330 ft	,						_						
	nate System: VA State Plane (N)							_						
	•	al Dept	h: 65	.0 ft										
									I					
DEPTH (ft)	MATERIAL DESCRIPTION		SYM	BOL	ELEV (ft)	STRA TUM	DEPT		MPLING			TESTS	R	EMARKS
0.5	0.0 - 0.5 ft: FILL, sampled as asphalt;	5	FILL	\otimes	3.4			\square	S-1, SS					
-	0.5 - 4.0 ft: FILL, sampled as silty sand	d]	- ·	7Х	7+2+27 REC=8", 4	4%				
-	with gravel, fine to medium grained sai moist, dark gray	nd;	FILL			1		Ĺ	S-2, SS					Possible
-						1		ЧX	50/0" REC=0", 0	%				ete or cobble ing split
4.0 -	4.0 - 6.0 ft: FILL, sampled as sandy lea	an		\bigotimes	0.1 -	-		$\left\{ - \right\}$	S-3, SS				spoor	
	clay; moist, dark gray, contains gravel, contains organics		FILL			-	- 5 -	+	4+1+1+1 REC=6", 2	5%				
6.0 -	6.0 - 8.0 ft: FILL, sampled as clayey sa	and		\bigotimes	2.1 -	1		Ĺ	S-4, SS		MC	= 21.2%		
-	with gravel; wet, black, contains brick fragments	T	FILL			-		ЧX	1/12"+1/12 REC=4", 1					
8.0 -					4.1 -	-	- ·	$\left(\right)$	S-5, SS			44.00/		
_	8.0 - 10.0 ft: FILL, sampled as clayey sand with gravel; wet, black, contains	$\overline{\Delta}$	FILL				L .	١V	1/12"+1+2 REC=12",	50%	IVIC	= 44.8%		
10.0	brick fragments, contains metal, wood and ceramic fragments	,			_ 64	A		Λ	12,	00 /0				
10.0-	10.0 - 18.5 ft: FILL, sampled as silty	$\neg \uparrow$			6.1		- 10 -	\mathbb{N}	S-6, SS 1+1+1+1					
-	sand, fine to medium grained sand; moist, black, contains wood, brick					1	F .	1Å	REC=15",	63%				
-	fragments, mica					1		1	4					
-						-	- ·	-						
_						4	Ļ .	$\overline{\mathbf{h}}$	S-7, SS			= 94.3%		
			FILL				45	Ň	2+8+8 REC=8", 4	4%	% Pa = 25	assing #20 .3	0	
							- 15 -					-		
_	1					1	F .	1						
-	-					-		+						
-	-					-	<u> </u>	-						
18.5	18.5 - 33.5 ft: ELASTIC SILT; moist, d	lark		Î	-14.6		L .	卜	S-8, SS	,		= 69.7%		
	gray, contains wood						00	Ŵ	WOH/12"+ REC=18",			= 0.75 tsf stivity =		
						1	- 20 -		1		2000) Ohms-cn		
-	4					1	- ·	1				ox = 38 mv = 6.38	'	
_	-					-		-						
_			MH			В	L .							
	23.5 ft: Change: contains wood, contai	ins						Ł	S-9, SS		PP	= 0.00 tsf		
_	mica				-			X	WOH/12"+ REC=18",	1 100%				
						1	- 25 -	Ť	1					
-	-					1		+						
	(continued)													

TEST BORING LOG; P:DRAFT LOGS 2015_02_16.GPJ; D: L:GINT LIBRARY _2015_02-16 (NCO).GLB; Print:10/6/16

3	Schnabel BORING	Project: Alexandria W	Vaterfront Fl	ood Miti	gation		Con	ing Number: htract Number: 160 et: 2 of 3	RCP-1
DEPTH (ft)	MATERIAL DESCRIPTIO	N SYMBO	ELEV (ft)	STRA TUM	S DEPTH	SAMPLING		TESTS	REMARKS
-		МН		-	 - 30 - 	S-10, SS WOH/18" REC=8", 4	14%	PP = 0.00 tsf	
- 33.5 - - -	33.5 - 43.5 ft: FAT CLAY; moist, gray, contains wood and mica	dark	29.6 29.6 	-	 - 35 - 	S-11, SS WOR/18" REC=18",	100%	LL = 55 PI = 26 MC = 69.5% % Passing #200 = 92.6 PP = 0.00 tsf	
-		СН		- B	 - 40 -	S-12, SS WOH/18" REC=18",	100%	PP = 0.00 tsf	
43.5 - - -	43.5 - 48.5 ft: LEAN CLAY; mois contains mica	t, gray, CL	39.6	-	 - 45 - 	S-13, SS WOR/18" REC=18",	100%	PP = 0.00 tsf	
- 48.5 - -	48.5 - 53.5 ft: POORLY GRADE moist, gray, probable ALLUVIAL contains very fine gravel and mic	material,	-44.6		 - 50 -	S-14, SS 3+5+5 REC=12",	67%		
- 53.5 - - -	53.5 - 58.5 ft: SILTY SAND, fine coarse grained sand; wet, gray, p ALLUVIAL material		-49.6 49.6 	C	 - 55 - 	S-15, SS WOH/18" REC=18",	100%	MC = 20.0% % Passing #200 = 33.3	
- 58.5 - -	58.5 - 63.5 ft: SANDY SILT; wet, probable ALLUVIAL material, cor fine gravel and mica	, gray, ntains ML	-54.6 		 - 60 -	S-16, SS 2+4+1 REC=18",	100%	LL = 20 PI = 3 MC = 23.5% PP = 0.50 tsf	

TEST BORING LOG; P:DRAFT LOGS 2015_02_16.GPJ; D: L:GINT LIBRARY_2015_02-16 (NCO).GLB; Print:10/6/16

1	Schnabel TEST ENGINEERING LOG	Project: Al	exandria Wat	erfront Fl	ood Miti	gation		Cont	ng Number: ract Number: 160 t: 3 of 3	RCP-1
DEPTH (ft)	MATERIAL DESCRIPTIO	N	SYMBOL	ELEV (ft)	STRA TUM	sai Depth	MPLING DATA		TESTS	REMARKS
63.5 - 65.0-	63.5 - 65.0 ft: SILTY SAND, fine coarse grained sand; wet, gray, mica, probable ALLUVIAL mater	e to contains rial	SM		с	- ₆₅ -	S-17, SS 3+3+3 REC=18", 1		MC = 20.3% % Passing #200 = 33.8 PP = 0.50 tsf	
	Bottom of Boring at 65.0 ft. Boring terminated at selected de	pth. Boring b	ackfilled with	grout upo	on comp	letion.				

	School TEST	Project: Ale	exandria	a Waterfi	ront Fl	ood Miti	gation		Borir	ng Number:		SS-1
1	Schnabel BORING								Cont	ract Number: it: 1 of 2	16C1201	
Contrac	tor: Free State Drilling, Inc.									bservations		
Contract	Frederick, Maryland tor Foreman: R. Stidham							Date	Time	e Depth	Casing	Caved
	el Representative: J. Smith				En	counte	red Σ	8/22		6.5'	4.5'	
	ent: CME-55 (Truck)				C	ompleti	on 🗵	8/22		25.5'	38.5'	
Method:	3-1/4" I.D. Hollow Stem Auger				Car	sina Pu	lled 🗴	8/22		8.5'		31.0'
						Singra		. 0/22		0.0		01.0
Hammer	Type: Auto Hammer (140 lb)											
Dates	Started: 8/22/16 Finished: 8/	/22/16										
	ate System: VA State Plane (N)		_									
Ground	Surface Elevation: 4.1 (ft)	Total Dept	i h: 40	.0 ft		1						
DEPTH (ft)	MATERIAL DESCRIPTIC	N	SYME		ELEV (ft)	STRA TUM	S DEPTH	SAMPLING		TESTS	RE	MARKS
1.0 -	0.0 - 1.0 ft: FILL, sampled as as inches of asphalt	phalt; 10	FILL		3.1 -							
2.5	1.0 - 2.5 ft: FILL, sampled as po graded sand with gravel, fine to r grained sand; moist, brown		FILL		- 1.6			S-1, SS 5+7+6 REC=6				
-	2.5 - 4.5 ft: FILL, sampled as cla with gravel, fine to medium grain moist, black and gray		FILL		-	-		S-2, SS 1+7+7+ REC=1				
4.5	 4.5 - 8.5 ft: FILL, sampled as cla sand, fine to coarse grained sand dark gray, contains gravel, shells fragments 6.5 ft: Change: SANDY LEAN C 	ď; wet, s, brick ∑	FILL		-0.5	-	- 5 -	/ S-4, SS	4 6", 67%	MC = 30.1% PP = 0.00 tsf		
8.5	to coarse grained sand; wet, darl contains gravel, shells, brick frag 8.5 - 10.5 ft: FILL, sampled as si	iments			-4.5	-		3+1+1+ REC=3	", 13%			
	ean clay, fine to medium grained wet, gray, contains shells		FILL				 - 10 -	\/ 1/12"+1				
10.5	10.5 - 13.5 ft: FILL, sampled as lean clay; wet, gray, contains she wood fragments, glass		FILL		-6.5 - -	A	 	S-6, SS WOH+2 REC=2	2/18" 4", 100%	MC = 47.4% PP = 0.00 tsf		
13.5 - 	13.5 - 23.5 ft: FILL, sampled as moist, gray, fine grained sand, co mica, wood				-9.5 - 	-	 - 15 -	S-7, SS 1+1+1 REC=1		MC = 55.9% $PP = 0.50 tsf$ $Resistivity =$ $2500 Ohms-cr$ $Redox = 27 m$ $pH = 6.58$	m	
-	18.5 ft: Change: wet		FILL		-	-		S-8, SS		PP = 0.00 tsf		
-					-	-	- 20 -	2/18" REC=1	8", 100%			
23.5	23.5 - 28.5 ft: FILL, sampled as lean clay; moist, gray, contains n wood fragments, metal (continued)		FILL	-	19.5	-		S-9, SS WOH/1 REC=1	8" 8", 100%	PP = 0.25 tsf		

TEST BORING LOG; P:DRAFT LOGS 2015_02_16.GPJ; D: L.GINT LIBRARY_2015_02-16 (NCO).GLB; Print:10/6/16

(ft) MATERIAL DESCRIPTION STMBOL (ft) TUM DEPTH DATA TESTS REMARKS (ft) TUM DEPTH DATA TA DESCRIPTION (ft) TUM DEPTH DATA TA DATA TA DATA TA DESCRIPTION TARE TARE TARE TARE TARE TARE TARE TARE	5	Schnabel BORING ENGINEERING LOG	lexandri	a Wat	erfront Fl	ood Miti	gation			Con	ng Number: tract Number: 160 et: 2 of 2	SS-
FILL $FILL$ FIL $FILL$ FIL $FILL$ $FILL$ $FILL$ $FILL$ $FILL$ $FILL$ $FILL$ $FILL$ FI	DEPTH (ft)	MATERIAL DESCRIPTION	SYMI	BOL							TESTS	REMARKS
$\begin{array}{c} 28.5 - 33.5 \text{ ft: ORGANIC CLAY; molst,} \\ \text{dark gray, contains mica, wood fragments} \\ 33.5 \\ \hline \\ 33.5 - 40.0 \text{ ft: CLAYEY SAND, fine to} \\ \text{medium grained sand; moist, gray,} \\ \text{contains mica, probable ALLUVIAL} \\ \text{material, wood fibers} \\ 10.0 \\ \hline \\ \text{Bottom of Boring at 40.0 ft.} \end{array}$	28.5					A	-	-				
$33.5 - 40.0 \text{ ft}: CLAYEY SAND, time to medium grained sand; moist, gray, contains mica, probable ALLUVIAL material, wood fibers SC = \begin{bmatrix} B \\ -35 \end{bmatrix} = \begin{bmatrix} -35 \\ -4 \end{bmatrix} = \begin{bmatrix} $	-	28.5 - 33.5 ft: ORGANIC CLAY; moist, dark gray, contains mica, wood fragments	он	<u>(()))))))))))))))))))))))))))))))))))</u>		-	- - 30 · - -	-	S-10, SS WOH/18" REC=18", 10	00%	PI = 42 MC = 59.7%	
40.0 - 36.0 - 36.0 - 40 - 36.0 - 40 - 36.0 - 40 - 40 - 40 - 41.4 - 41.	33.5 -	medium grained sand; moist, gray, contains mica, probable ALLUVIAL	SC		-29.5 - 	- B -	- - 35 · - -	ע ר	WOH+2+2	00%		
	40.0	Bottom of Boring at 40.0 ft.				-			1+1+2	00%	% Passing #200	

5	Schnabel Boring	roject: Alexa	anuna	Wale			Jation				g Number: act Number:	16C1201	<u>SS-</u> 2
	ENGINEERING LOG										: 1 of 1		
Contract	tor: Free State Drilling, Inc.		_	_		_	_	_	Ground	water Ob	servations	_	_
	Frederick, Maryland								Date	Time	Depth	Casing	Caved
	tor Foreman: R. Stidham				Er	ncounte	red	V	8/18	10:44 A	M Dry	23.5'	
	el Representative: J. Spencer ent: CME-55 (Truck)				c	ompleti	on	V	8/18		Dry	23.5'	
	3-1/4" I.D. Hollow Stem Auger					sing Pu		-	8/18				14.0'
	C C				Ca	sing Pu	liea	<u>¥</u>	8/18		13.5'		14.0'
Hammer	Type: Auto Hammer (140 lb)												
Dates	Started: 8/18/16 Finished: 8/18	3/16											
C a sudiu	eta Custamu V/A Otata Diana (Ni)												
	ate System: VA State Plane (N) Surface Elevation: 4.4 (ft)	Total Depth	· 25 (0 ft									
			. 20.										
DEPTH (ft)	MATERIAL DESCRIPTION		SYMB	OL	ELEV (ft)	STRA TUM	DEP		MPLING		TESTS	RE	MARKS
0.5	0.0 - 0.5 ft: FILL, sampled as asph		FILL		3.9		_		S-1, SS 6+23+14				
2.0 -	0.5 - 2.0 ft: FILL, sampled as well	graded	FILL		2.4		_	Ľ	REC=15",	83%			
2.0	gravel with sand; moist, light gray, coarse gravel, contains wood fragm	nents /			۲.4		_	\mathbb{N}	S-2, SS 5+10+8+6 REC=18",	75%			
_	2.0 - 6.0 ft: FILL, sampled as claye sand, fine to medium grained sand	ļ,	FILL	×		4	_	\downarrow					
_	moist, dark gray, contains gravel, b fragments 4.0 ft: Change: gray	Drick	-)		-	- 5	-	S-3, SS 4+8+7+6 REC=21",	000/	MC = 16.5% % Passing #2 = 49.8	00	
6.0 -	6.0 - 13.5 ft: FILL, sampled as lear	n clay			-1.6	-	-	+	S-4, SS	r	MC = 21.7%		
-	with sand; moist, light gray			₿		A	_	+	4+6+5+5 REC=20",	83%	Resistivity = 1900 Ohms-c		
-	8.0 ft: Change: gray brown, contair	ns fine		\bigotimes		-	-	$\left \right $	S-5, SS 2+1+1+1		Redox = -2 m oH = 7.14	v	
_	gravel		FILL	*		1	-	\downarrow	REC=22",	92%			
_	10.0 ft: Change: no gravel		ILL	₿		1	- 10	1	S-6, SS 1+1+1+2	10	L = 26		
-						-	-	1X	REC=14",	58%	PI = 8 MC = 21.1% % Passing #2	00	
-				\bigotimes		1	-	1		=	% Passing #2 = 77.7 PP = 2.50 tsf		
13.5	10 5 10 5 4. FAT OLAV.	<u> </u>		Ø	-9.1		_		S-7, SS				
-	13.5 - 18.5 ft: FAT CLAY; moist, g contains mica	ıdy,				1	-	-1Х	1/12"+1 REC=18",		PP = 0.50 tsf		
_						1	- 15	1	<u> </u>				
-			СН			1	-	-					
_						1	_	1					
18.5		d a set a			-14.1	1	-				10 55 664		
_	18.5 - 25.0 ft: SANDY FAT CLAY; gray, very fine gravel, contains woo	dark od fiber				в	-	1	S-8, SS WOH/12" REC=18",	+1 F	MC = 55.8% PP = 0.00 tsf		
-						-	- 20	+	<u> </u>				
-						1	_	-					
_			СН			-	<u> </u>	-					
-						-	_	-					
-						-	_	+	S-9, SS WOH/12" REC=18",	+1	PP = 0.50 tsf		
25.0					20.6-		- 25	<u> </u>	V ^{™EC=18"} ,	100%			

5	Schnabel BORING	Project: Ale	exandria	a Wa	terfront	t Flo	od Miti	gation			Con	ng Number: tract Number: at: 1 of 2	16C120	SW-1
Contra	ctor: Free State Drilling, Inc.									Ground		Observations		
	Frederick, Maryland									Date	Tim		Casing	Caved
	ctor Foreman: R. Stidham					End	counte	red 🛛	7	8/22		6.0'	6.0'	
	bel Representative: J. Smith				-				_					
	nent: CME-55 (Truck)					Co	mpleti	on <u>]</u>	<u> </u>	8/22		5.0'	25.0'	
Method	d: Mud Rotary													
Hamme	er Type: Auto Hammer (140 lb)				-				_					
	Started: 8/22/16 Finished: 8/	/22/16												
	0 ft East: 732 ft													
	nate System: VA State Plane (N)													
Ground	d Surface Elevation: 4.1 (ft)	Total Dep	th: 35	.0 ft										
DEPTH	MATERIAL DESCRIPTIO	N	SYMI		ELE	v	STRA		SA	MPLING		TESTS		EMARKS
(ft)			01101	JOL	(ft)		тим	DEPT	н	DATA		12010		
0.5	_ 0.0 - 0.5 ft: FILL, sampled as co	ncrete; 4 _	FILL		3.6									
		/	FILL			_			₩	S-1, SS 11+14+20				
2.0	0.5 - 2.0 ft: FILL, sampled as silt				2.1			Ļ -	\square	REC=5", 2	8%			
	hoist, tan gray, contains wood	/							\mathbb{N}	S-2, SS 5+2+2+2				
·	2.0 - 4.0 ft: FILL, sampled as cla	/	FILL		t i	-			1Å	REC=8", 3	3%			
4.0	gravel with sand; wet, black, fine	e gravel			- 0.1	-			$\left(\right)$	S-3, SS				
_	4.0 - 6.0 ft: FILL, sampled as cla gravel with sand, fine to coarse of		FILL		1	_	А	- 5 -	Įχ	2+2+1+2 REC=6", 2	5%			
	sand; black, contains gravel, org								$ \rangle$,				
6.0	6.0 - 8.0 ft: FILL, sampled as sa				1.9	"]			\mathbb{N}	S-4, SS 2+17+5+1				
.	 wet, gray, contains wood, (samp through a tree root) 	iea	FILL		$\frac{1}{2}$	-			łX	REC=8", 3	3%			
8.0 -		lestic silt			-3.9) -			(S-5, SS		MO - 70 C0/		
10.0-	8.0 - 10.0 ft: FILL, sampled as e with sand; wet, gray, chemical o		FILL						IV	1/24" REC=13",	E10/	MC = 72.6% PP = 0.00 tsf		
										KLC-13,	J H /0			
	10.0 - 18.5 ft: SILT; moist, gray,	contains		Î	-5.9) –		- 10 -	ί,	S-6, SS		LL = 48		
	_ sand and gravel				-	-			łX	WOR/24" REC=24",	100%	PI = 20 MC = 53.1%		
	_				Ļ	4			$\langle \rangle$			% Passing #2 = 89.3	00	
												- 00.0		
]				Γ	1		Г ⁻					10-	10 5 6 5 5
-	-		ML		╞	-			łV	S-7, SS 1/18"	0/		13.5 recov	- 18.5 ft: No /ery
-	-				<u> </u>	_		- 15 -	\downarrow	REC=0", 0	70			
								L -						
5	1				F	-	В		1					
	-				\vdash		D		-					
18.5	18.5 - 33.5 ft: ELASTIC SILT; m	ioist,		┼╽╽	-14.	4		L -	17	S-8, SS		LL = 52		
	gray, contains wood fibers								Ŵ	WOR/18" REC=18",	100%	PI = 22 MC = 59.1%		
	1							- 20 -	1	1		PP = 0.00 tsf		
	-				╞	-			1					
	-		MH		\vdash	4								
]				Γ	1		Г ⁻						
-	-				╞	-			ťV	S-9, SS WOR/18"	1000/	PP = 0.00 tsf		
	(continued)								$\langle \rangle$	REC=18",	100%			

TEST BORING LOG; P:DRAFT LOGS 2015_02_16.GPJ; D: L:GINT LIBRARY _2015_02-16 (NCO).GLB; Print:10/6/16

	Schnabel BORING					ood Miti	galion		Cor	ing Number: htract Number: 160 et: 2 of 2	SW-1
DEPTH (ft)	MATERIAL DESCRIPTIC	DN	SYMB	OL	ELEV (ft)	STRA TUM	S DEPTH	AMPLIN		TESTS	REMARKS
	33.5 - 35.0 ft: SANDY ELASTIC	SILT	MH		 29.4	В	 - 30 	S-10, 5 WOR/ REC=1	8" 8", 100%	MC = 57.9% PP = 0.00 tsf Resistivity = 2400 Ohms-cm Redox = 35 mv pH = 6.25 PP = 0.25 tsf	

Bottom of Boring at 35.0 ft. Boring terminated at selected depth. Boring backfilled with grout upon completion.

APPENDIX B

SUBSURFACE EXPLORATION DATA BY OTHERS

											Log of	Bo	ori	ng	ј В-	·1	
		URS						Waterfro OCATION:				RD. S	YS./	/DA1	rum: /		
		6						NUMBER:	15303								
		ARTED: 4/14/2014	1					. Hollow Ster	-	-	G		dwa ate	_	Observ Time	vations Depth	Cave in
		DMPLETED: 4/16/2041 BY: M Gravina	CASING				iHI:	Auto Hammer	/140105				ale			(ft)	Depth (f
		D BY:	CASING			-					Encountered 모	04-16	5-201	4		8.5	
DRILI		G CONTRACTOR: Connelly & Asso	BIT TYP				A				Completion T	04-16	2 204			4.9	17.5
DRILL	_ RI	G: T-2 Track Rig	BOREH	IOLE	DEP	TH: 7	70.0 F	=T		ŀ		04-10	J-201	4		4.9	17:5
DRILL	_ER	: Zac	SURFA	CE E	LEV		N: 4	FT +/	/				621	1			
-	Ē				ပ			SAMPLES			MOISTURE CON	TENT	n. (ts	(tsf)			
	ELEV. (FT)	DESCRIPTION		nscs	GRAPHIC	NUMBER	ТҮРЕ	BLOWS	REC (IN.) (%)	WELL			Pocket Pen (tsf	Torvane (REMARI AND TES	
	ŀ	5 inches of top soil			××	S-1	M	1-17-15	16"								
	-	Moist, very loose to medium dense, da brown and black, nonplastic, SILTY SA			\otimes		\square		(89%)								
	0	WITH GRAVEL AND CONCRETE FRAGMENTS (FILL),			\otimes	S-2	X	4-6-6	14"			8.65					
V		Strong patroleum adae between 0.5.6	t and		\otimes				(78%)			1000					
5.5%	-	Strong petroleum odor between 2.5 fe 13.5 feet.	ar and		\otimes	S-3	X	7-5-5	9"								
	-						H		(50%)			10.00					
$\overline{\Delta}$	-5				\otimes						0						
0	Ē				\otimes	S-4	M	2-1-1	9"								
]				\boxtimes		П		(50%)								
	-				\otimes												
-	10				\otimes					1	a 0						
5	Τ				\otimes	S-5	М	1-2-4	5"			100					
					\otimes		П		(28%)								
	-				\otimes							1041					
-*	15	Wet, very soft, dark brown, medium pla	asticity		\bigotimes		H				0	4171					
20 25 55 -4 55 -3 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4]	LEAN CLAY WITH SAND	aouoity,			S-6	X	1-1-3	8" (44%)								
	-								(44 %)								
	-																
-2	20-	Wet, medium dense, dark gray, nonpla	istic				H				0						
5	1	SILTY GRAVEL WITH SAND,	iolio,		[¢	S-7	Х	13-25-20	16" (89%)								
	-				60				(09%)		1000				likely due	gh blow cou e to testing	unts are on
	-	with wood (possible wood log) between	23.5		[at										wood/wo	od log	
-2	25	feet and 28.5. Auger refused at 23 feet. Boring was o	ff set 6	GM	6	È.					A GE						
0		feet south.				S-8	\boxtimes	21-7-5	14"								
	-				6				(78%)								
	-				β¢												
-3	30	Moist, very soft to medium stiff, dark g	av low		reh		H					1011					
5		plasticity, SANDY SILT WITH GRAVE	- -			S-9	X	11-4-3	6" (33%)								
									(00 %)								
				ML													
-3	35											0					
0				<u> </u>		S-10	V	1-WOH-2	18"			8					
110	\$ (CORPORATION		B	= Bull	Sam	ple	S = Split Spoo	n Sample	- 1) = Denison Sample	•					

										Log of Bo	ori	ng	B-1
		URS											
							LOCATION:	Alexa		a, vA			
	(FT)		s	P ₽	C C C	2	SAMPLES	·		MOISTURE CONTENT	en. (tsf)	(tsf)	DEMARKS
	ELEV. (FT)	DESCRIPTION	USCS	GRAPHIC	NUMBER	ТҮРЕ	BLOWS	REC (IN.) (%)			Pocket Pen. (tsf	Torvane (tsf)	REMARKS AND TESTS
	-	Moist, very soft to medium stiff, dark gray, low plasticity, SANDY SILT WITH GRAVEL(continued)						(100%)					
5	-40				S-11	X	WOH-WOH-2	0" (NR)					
0	-45				S-12	X	WOH-WOH-3	18" (100%)					
5	-50		ML		S-13	X	3-2-3	13" (72%)		o			
50	-55				S-14	X	2-2-2	18" (100%)					
5	-60	Moist, medium dense to dense, dark gray and brown, medium plasticity, CLAYEY SAND, (Potomac Soils)			S-15	X	13-19-20	18" (100%)		o			Ŧ
70	-65	BORING AT 70.0 FT ON 4/16/2041 AT 9:30	SC		S-16	X	5-8-10	12" (67%)					
O U I 24 Ge Ph		AM HOURS.											
U 124 Ge	420 Mi rmant	CORPORATION liestone Center Drive, Suite 150 town, MD 20876 301.820.3000 Fax: 301.820.3009	G	= Geo	k Samp oprobe ston Sa		S = Split Spoo T = Shelby Tul P = Pitcher Sa	e Sampl	le F	D = Denison Sample RC = Rock Core SC = Sonic Core			HEET 2 of 2

					_				-	Log of E	Ro	ri	n	n R	-2	
	URS						Waterfro LOCATION:			Area					-	
				PR	OJE	сті	NUMBER:	153033	359	COORE	DINA	TE	S:	NE		
DATE S	STARTED: 4/16/2014	DRILL N	IETH	HOD:	3-1/-	4" I.D	. Hollow Ster	n Auger	L	Gro	ound	dwa	ater	Obser	vations	1.6
DATE C	COMPLETED: 4/16/2041	HAMME	RT	YPE/	WEIG	HT: /	Auto Hammer	/140lbs			Da	ate		Time	Depth (ft)	Cave in Depth (f
LOGGE	GED BY: M Gravina	CASING	S TY	PE: I	HSA				t	Encountered 모 0						- Dopur (
	KED BY:	CASING							ŀ	Encountered – 0)4-14	-201	3		5.0	
	ING CONTRACTOR: Connelly & Ass									Completion Y 0)4-14	-201	4		4.5	7.2
	. RIG: T -2 Track Rig .ER: lan	BOREH						1_	Î	After V 0)4-16	201			3.9	6.3
	1			T						Drilling 🛨 🛛	J4-10-		4		5.5	0.5
DEPTH (FT) ELEV. (FT)			USCS	GRAPHIC	NUMBER	TYPE	SAMPLES BLOWS	REC (IN.) (%)	WELL			Pocket Pen. (tst	Torvane (tsf)		REMAR AND TES	
	- 5 inches of top soil		-	xx	S-1	\mathbf{N}	3-4-12			20 40 60 80	+	-	-			
	Wet, very loose to medium dense and black, low plasticity, CLAYEY	SAND		\otimes	3		0 - 12	16" (89%)								
	WITH GRAVEL AND CONCRETE FRAGMENTS (FILL),			\otimes	S-2	\bigtriangledown	6-30-50/1""	4.0#								
5 ¥ 0				\otimes	3	P	2 00 001	10" (77%)						400-0-	noroto et 4	foot Auron
<u>5 ¥ 0</u>	 Strong petroleum odor between 2. 	5 feet and		\otimes						1110				refusal.	ncrete at 4 Boring was	offset 5
	13.5 feet.				S-3	A	4-4-28	8" (44%)						feet eas	it.	
10 -5					S-4		4-3-1	14" (78%)							ł.	
15 -10	Moist, very soft, dark brown, medi plasticity, SILT WITH GRAVEL AN ORGANICS	um ID			S-5	X	2-2-1	18" (100%)		∆G€3						
20 -15	- 5 -		ML		S-6	X	2-1-1	18" (100%)		o						
25 -20	Moist, very soft, dark gray, high pl ELASTIC SILT	asticity,			S-7		WOH-WOH-2	18" (100%)		∆ 0 —€						
30 -25	25		R ALL		S-8	X	2-2-1	16" (89%)		0						
35 -30	- 		MH		S-9	X	он-woн-wc	H 18" (100%)		o						
40 -35				= Pull	S-10	V	OH-WOH-WC	les de		O = Denison Sample						
12420 M German	S CORPORATION D Milestone Center Drive, Suite 150 Mantown, MD 20876 e: 301.820.3000 Fax: 301.820.3009		G	= Geo	probe		T = Sheiby Tul P = Pitcher Sa	be Sample	•	RC = Rock Core SC = Sonic Core				SHEE	T 1 of 2	

		TTDC		DC		ст.			- 11 -	Log of Bo			
		URS					Waterfro _OCATION:						
				PF	ROJE	сті	NUMBER:	15303	35 9				
	ELEV. (FT)		ι γ	лIC	, <u>~</u>		SAMPLES	2		MOISTURE CONTENT	en (tsf	e (tsf)	REMARKS
ויד) הוידפט	ELEV	DESCRIPTION	nscs	GRAPHIC	NUMBER	ТҮРЕ	BLOWS	REC (IN.) (%)	WELL	ATTERBERG MC PL LL G A C 20 40 60 60	Pocket Pen. (tst	Torvane (tsf)	AND TESTS
	-	Moist, very soft, dark gray, high plasticity, ELASTIC SILT(<i>continued</i>)						(100%)					
	-									0			
5	-40		MH		S-11	X	он-woн-wc	H 18" (100%)					
	-												
0	-45	Wet, very loose to medium dense, light gray, nonplastic, SILTY SAND			S-12	M	5-3-1	18"					
	-							(100%)					
	-									1000100			
5	-50		SM		S-13	Ø	4-8-11	8" (44%)					
	1												
•	-	Moist, medium dense, dark gray and brown, medium plasticity, CLAYEY SAND,	-		S-14	X	6-8-11	7*		Ō			
0	-55	(Potomac Soils)					0011	(39%)					
	-			Ű									
5	-60		SC		S-15	\boxtimes	4-11-14	17" (94%)		0			
								(0)					
	-	Moist, very stiff, gray, high plasticity, FAT			0.46		5-7-11						
0	-65	CLAY WITH SAND BORING AT 70.0 FT ON 4/16/2041 AT 5:30 PM HOURS.	СН		S-16	\square	5-7-11	13" (72%)					
_		CORPORATION	В=	- Bulk	Samp	le	S = Split Spoor	Sample	D	= Denison Sample	-		

APPENDIX C

SOIL LABORATORY TEST DATA

Summary of Laboratory Tests Gradation Curves Atterberg Limits Corrosion Potential Series Chloride and Sulfate Tests Moisture Content Tests Density of Soil Tests Specific Gravity Tests Grain Size Distribution Atterberg Limits Unconsolidated-Undrained (UU) Triaxial Shear Test Results

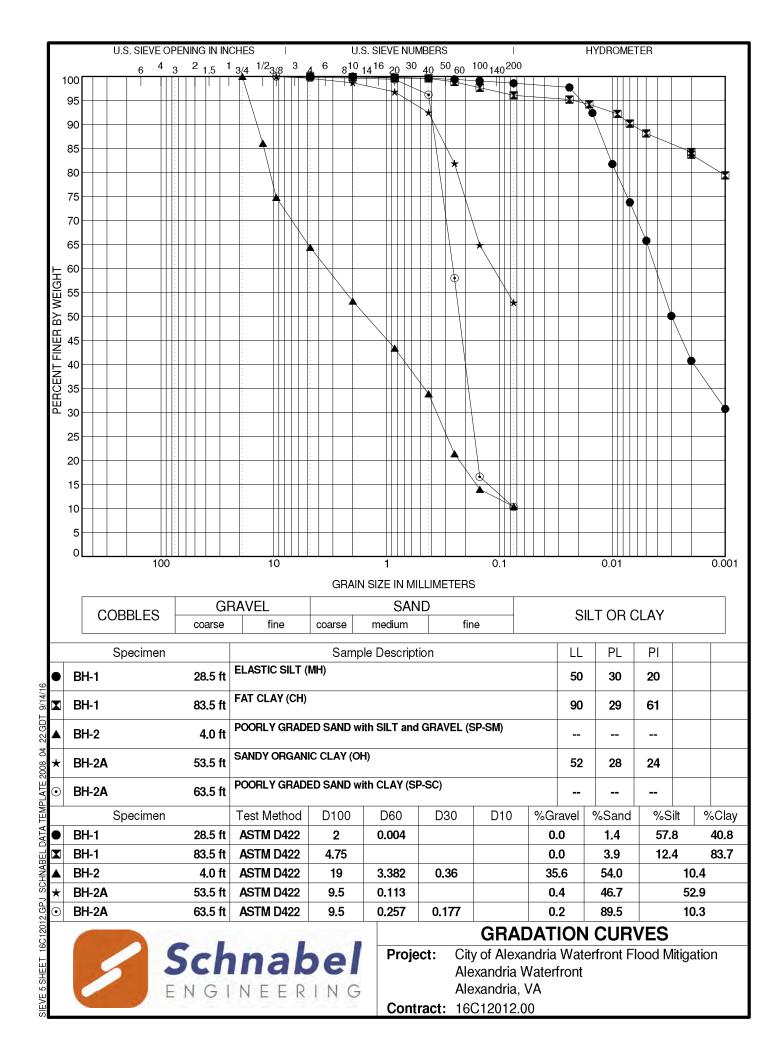
	1		T	1	1			Summar		oratory	10313						
							Atterber	g Limits	-					Corrosion Te	estings		
Boring	Depth (ft)	USCS	Stratum	Moisture Content (%)	Fines Content (%)	Liquid Limits (%)	Plastic Limit (%)	Plasticity Index (%)	Oven- Dried Liquid Limit (%)	Specific Gravity	Bulk Density (pcf)	рН	Oxidation Reduction Potential (mV)	Resistivity (ohm-cm)	Sulfides (presence)	Chlorides (mg/kg)	Sulfates (mg/kg)
BH-1	2-6	SM	Α	15.5	-	-	-	_	-	-	-	10.7	-178	6100	Negative	61	390
BH-1	6-8	SM	А	13.2	-	-	-	-	-	-	-	-	-	-	-	-	-
BH-2	2-4	SP	А	11.3	-	-	-	-	-	-	-	-	-	-	-	-	-
BH-2	4-6	SP-SM	А	12.4	10.4	-	-	-	-	-	-	-	-	-	-	-	-
BH-2	10-12	SP	А	23.3	-	-	-	-	-	-	-	-	-	-	-	-	-
BH-2	14-15.5	MH	А	53	_	51	29	22	_	-	-	-	-	-	-	_	-
BH-2A	15-25	СН	А	46.1	-	-	-	-	-	-	-	6.5	33	1800	Negative	19	310
BH-2A	18.5-20	MH	А	60	-	50	29	21	-	-	-	-	-	-	-	-	-
BH-2A	33-35	MH	А	57.6	95.7	54	31	23	-	2.67	98.01	-	-	-	-	-	-
PS-1	8-10	CL	А	23.1	71.5	28	18	10	-	-	-	-	-	-	-	-	-
PS-1	0-4	SM	А	9.1	-	-	-	-	-	-	-	12.0	-243	4200	Negative	160	790
PS-1	13.5-15	SP	А	24.2	2	-	-	-	-	-	-	-	-	-	-	-	-
RCP-1	6-8	SC	А	21.2	-	-	-	-	-	-	-	-	-	-	-	-	-
RCP-1	8-10	SC	А	44.8	-	-	-	-	-	-	-	-	-	-	-	-	-
RCP-1	13.5-15	SM	А	94.3	25.3	-	-	-	-	-	-	-	-	-	-	-	-
SS-1	4.5-6.5	SC	А	30.1	-	-	-	-	-	-	-	-	_	-	-	-	-
SS-1	10.5-12.5	CL	А	47.4	-	-	-	-	-	-	-	-	_	-	-	-	-
SS-1	13.5-20	CL	А	55.9	-	-	-	-	-	-	-	6.6	27	2500	Negative	48	57
SS-2	4-6	SC	А	16.5	49.8	-	-	-	-	-	-	-	-	-	-	-	-
SS-2	6-10	CL	А	21.7	-	-	-	-	-	-	-	7.1	-2	1900	Negative	100	12
SS-2	10-12	CL	А	21.1	77.7	26	18	8	-	2.73	-	-	-	-	-	-	-
SW-1	8-10	MH	А	72.6	-	-	-	-	-	-	-	-	-	-	-	-	-
			Min	9.1	2	26	18	8	-	2.67	98.01	6.5	-243	1800		19	12
			Max	94.3	95.7	54	31	23	-	2.73	98.01	12.0	33	6100		160	790

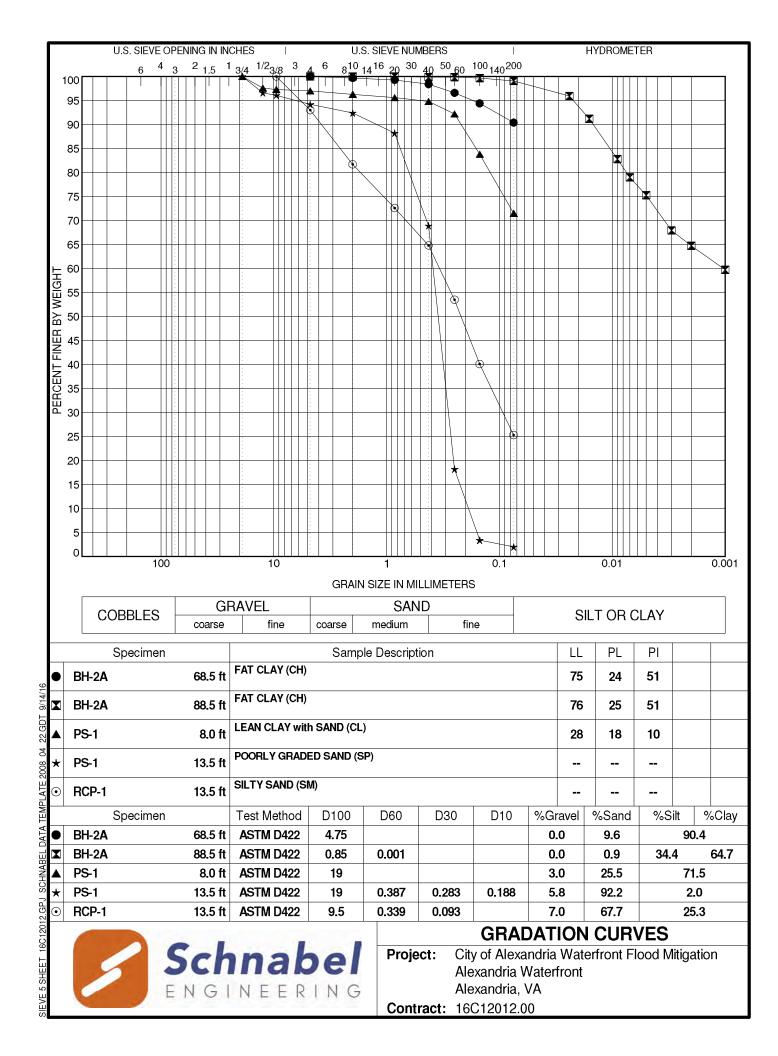
Appendix B: Summary of Laboratory Tests

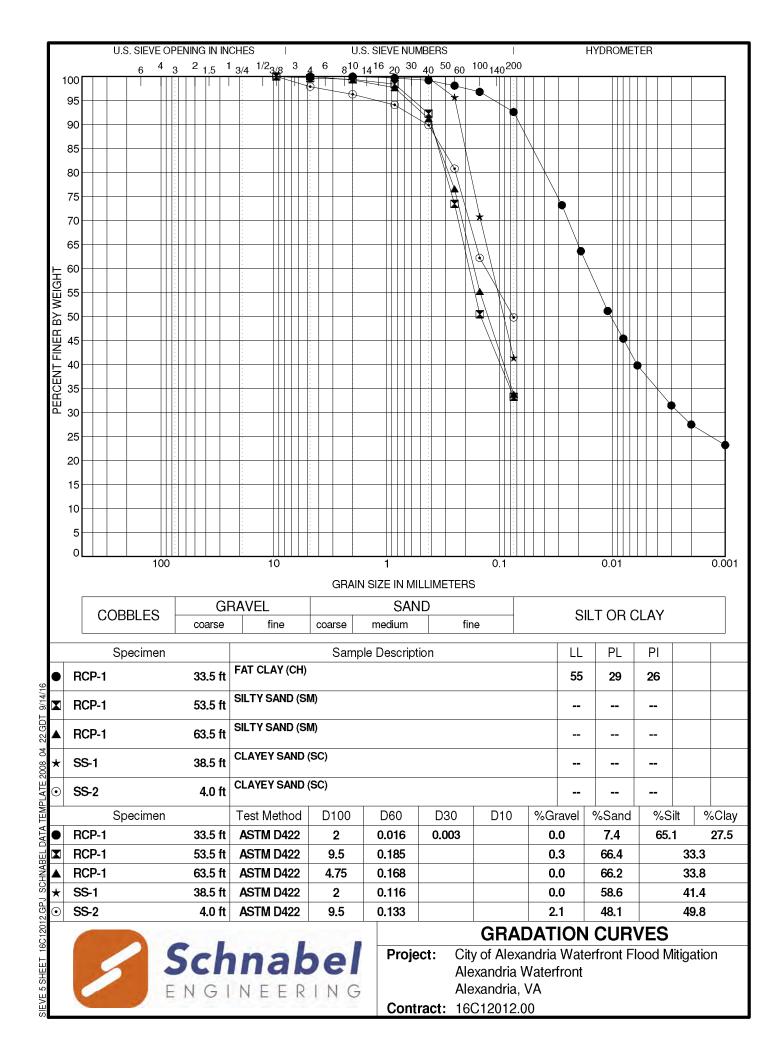
							Atterber	g Limits						Corrosion T	estings		
Boring	Depth (ft)	USCS	Stratum	Moisture Content (%)	Fines Content (%)	Liquid Limits (%)	Plastic Limit (%)	Plasticity Index	Oven- Dried Liquid Limit (%)	Specific Gravity	Bulk Density (pcf)	рН	Oxidation Reduction Potential (mV)	Resistivity (ohm-cm)	Sulfides (presence)	Chlorides (mg/kg)	Sulfates (mg/kg)
BH-1	18.5-20	ML	В	52.3	-	44	28	16	-	-	-	-	-	-	-	-	-
BH-1	28.5-30	MH	В	54.3	98.6	50	30	20	-	2.69	-	-	-	-	-	-	-
BH-1	33.5-40	MH	В	57.2	-	-	-	-	-	-	-	6.4	36	2400	Negative	18	43
BH-2A	43.5-45	CL	В	60.1	-	-	-	-	-	-	-	-	-	-	-	-	-
BH-2A	53.5-55	ОН	В	50.5	52.9	52	28	24	36	-	-	-	-	-	-	-	-
RCP-1	18.5-25	MH	В	69.7	-	-	-	-	-	-	-	6.4	38	2000	Negative	50	150
RCP-1	33.5-35	СН	В	69.5	92.6	55	29	26	-	2.63	-	-	-	-	-	-	-
SS-1	28.5-30	ОН	В	59.7	-	74	32	42	42	-	-	-	-	-	-	-	-
SS-1	38.5-40	SC	В	24.6	41.4	-	-	-	-	-	-	-	_	-	-	-	-

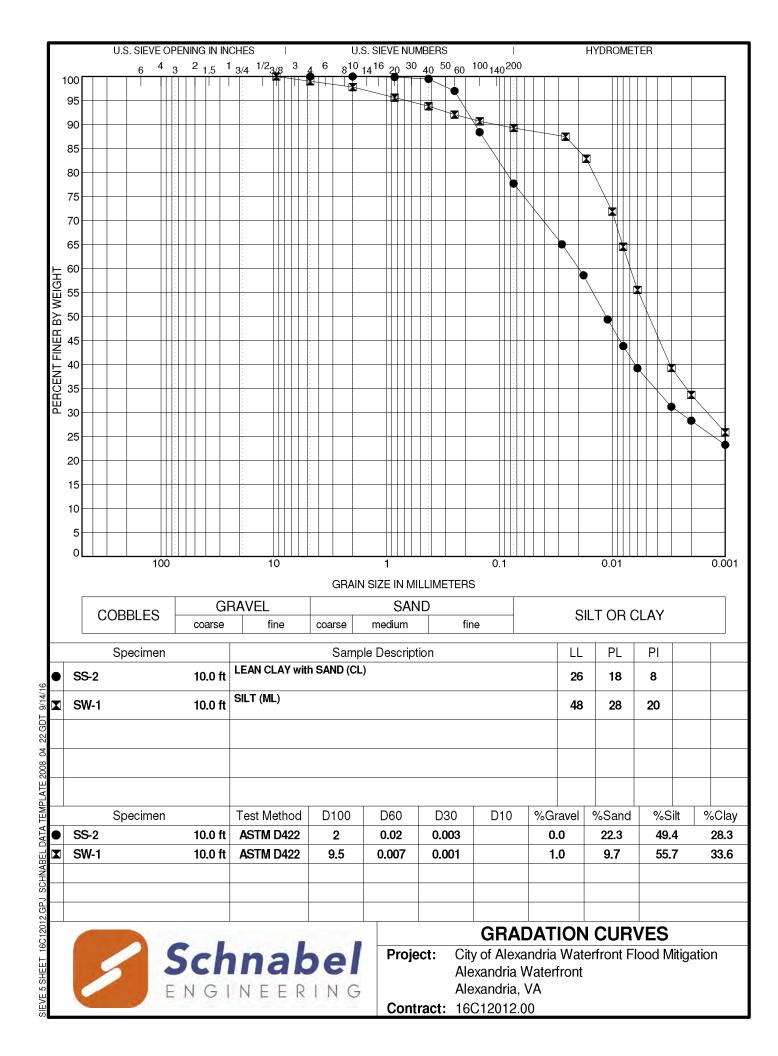
			-		1			ounnar	,	<u> </u>							
							Atterber	g Limits						Corrosion Te	estings		
									Oven-								
					Fines				Dried		Bulk		Oxidation				
	Depth			Moisture	Content	Liquid	Plastic	Plasticity	Liquid	Specific	Density		Reduction	Resistivity	Sulfides	Chlorides	Sulfates
Boring	(ft)	USCS	Stratum	Content (%)	(%)	Limits (%)	Limit (%)	Index (%)	Limit (%)	Gravity	(pcf)	рН	Potential (mV)	(ohm-cm)	(presence)	(mg/kg)	(mg/kg)
SS-2	18.5-20	СН	В	55.8	-	-	-	-	-	-	-	-	-	-	-	-	-
SW-1	10-12	ML	В	53.1	89.3	48	28	20	-	2.61	-	-	-	-	-	-	-
SW-1	18.5-20	MH	В	59.1	-	52	30	22	-	-	-	-	-	-	-	-	-
SW-1	28.5-35	MH	В	57.9	-	-	-	-	-	-	-	6.3	35	2400	Negative	24	69
			Min	24.6	41.4	44	28	16	36	2.61	_	6.3	35	2000		18	43
			Max	69.7	98.6	74	32	42	42	2.69	-	6.4	38	2400		50	150

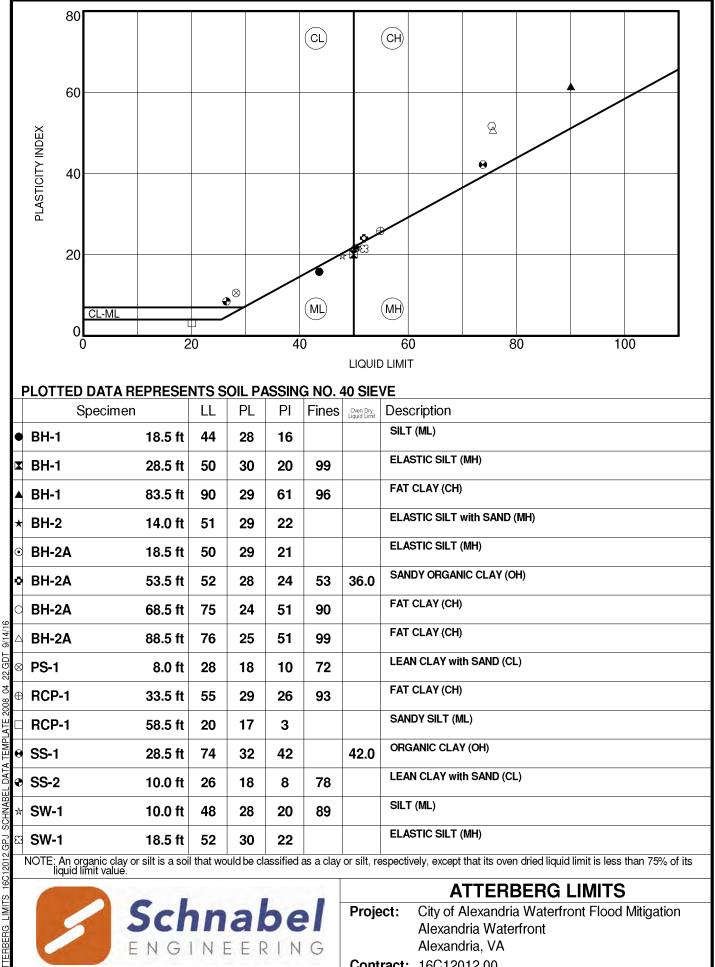
Appendix B: Summary of Laboratory Tests


							Atterber	g Limits						Corrosion Te	estings		
					Fines				Oven- Dried		Bulk		Oxidation				
	Depth			Moisture	Content	Liquid	Plastic	Plasticity	Liquid	Specific	Density		Reduction	Resistivity	Sulfides	Chlorides	Sulfates
Boring	(ft)	USCS	Stratum	Content (%)	(%)	Limits (%)	Limit (%)	Index	Limit (%)	Gravity	(pcf)	рН	Potential (mV)	(ohm-cm)	(presence)	(mg/kg)	(mg/kg)
BH-2A	63.5-65.5	SP-SC	С	20	10.3	-	-	-	-	-	-	-	-	-	-	-	-
RCP-1	53.5-55	SM	С	20	33.3	-	-	-	-	-	-	-	-	-	-	-	-
RCP-1	58.5-60	ML	С	23.5	-	20	17	3	-	-	-	-	-	-	-	-	-
RCP-1	63.5-65	SM	С	20.3	33.8	-	-	-	-	-	-	-	-	-	-	-	-
			Min	20	10.3	-	_	-	-	-	-	_	-	-	_	_	-
			Max	23.5	33.8	-	-	-	-	-	-	-	-	-	-	-	-


							Atterber	g Limits						Corrosion T	estings		
Boring	Depth (ft)	USCS	Stratum	Moisture Content (%)	Fines Content (%)	Liquid Limits (%)	Plastic Limit (%)	Plasticity Index	Oven- Dried Liquid Limit (%)	Specific Gravity	-	рН	Oxidation Reduction Potential (mV)	Resistivity (ohm-cm)	Sulfides (presence)	Chlorides (mg/kg)	Sulfates (mg/kg)
BH-1	60.5-62.5	MH	D	32.5	90.5	59	31	28	-	2.63	118.7	-	-	-	-	-	-
BH-1	63-64.5	CL	D	34.3	-	-	-	-	-	-	-	-	-	-	-	-	-
BH-1	68.5-75	CL	D	37.7	-	-	-	-	-	-	-	5.4	77	900	Negative	ND	18
BH-1	83.5-85	СН	D	37.4	96.1	90	29	61	-	2.87	-	-	-	-	-	-	-
BH-2A	68.5-70	СН	D	29.9	90.4	75	24	51	-	-	-	-	-	-	-	-	-
BH-2A	73.5-80	CL	D	31.5	-	-	-	-	-	-	-	4.1	135	800	Negative	ND	15
BH-2A	88.5-90	СН	D	28.7	99.1	76	25	51	-	2.81	-	-	-	-	-	-	-
			Min	28.7	90.4	59	24	28	-	2.63	118.7	4.1	77	800			15
			Max	37.7	99.1	90	31	61	-	2.87	118.7	5.4	135	900			18


Notes:


(1) Soil tests in general accordance with ASTM standards.
 (2) Soil classifications are in general accordance with ASTM D2487 (as applicable), based on testing indicated or visual classification


(3) "ND" denotes that analyte not detected at or above the reporting limit
 (4) "-" denotes the laboratory test was not performed

9 2008 TEMPLATE DATA SCHNABEL 16C12012.GPJ

Contract: 16C12012.00

Project Name: Alexandria Waterfront

Project No: 16C12012

Sample No:SS-1, S-7/S-8Depth:13.5-20 ftClassification:SILT (ML)

Test	Unit	Readings	Points
Resistivity	ohm-cm	2,500	2
рН		6.58	0
Redox	mV	27	4
Sulfide	presence	Negative	0
Moisture	condition	Wet	2
Total Points			8

As received	
moisture	

Tare No.	dolt
Ww + Wt	43.6
Wd + Wt	33.28
Wt	14.81
Ww	10.32
Wd	18.47
% MC	55.9

 Sample No:
 BH-1, S-2/S-3

 Depth:
 2-6 ft

 Classification:
 SILTY SAND with GRAVEL (SM)

As received moisture

Tare No.	smd
Ww + Wt	88.86
Wd + Wt	78.9
Wt	14.72
Ww	9.96
Wd	64.18
% MC	15.5

Test Unit Readings Points Resistivity ohm-cm 6,100 0 pН 10.67 3 -mV -178 5 Redox Sulfide Negative 0 presence 2 Wet Moisture condition **Total Points** 10

NOTE: See Table A.1 attached for point system information and data interpretation

REMARKS:

Tested By: Date: L. Geake 8/31/16 Checked By: Date:

Project Name: Alexandria Waterfront

Project No: 16C12012

Sample No:BH-1, S-11/S-12Depth:33.5-40 ftClassification:SILT (ML)

Test	Unit	Readings	Points
Resistivity	ohm-cm	2,400	2
рН		6.37	0
Redox	mV	36	4
Sulfide	presence	Negative	0
Moisture	condition	Wet	2
Total Points			8

As received moisture

Tare No.	race
Ww + Wt	67.85
Wd + Wt	48.50
Wt	14.68
Ww	19.35
Wd	33.82
% MC	57.2

Sample No:BH-1, S-18/S-19Depth:68.5-75 ftClassification:SANDY LEAN CLAY with GRAVEL (CL)

As received moisture

Tare No.	whu
Ww + Wt	49.82
Wd + Wt	39.81
Wt	13.27
Ww	10.01
Wd	26.54
% MC	37.7
70 WIO	01.1

Test Unit Readings **Points** Resistivity 900 10 ohm-cm pН 5.40 0 --mV 77 Redox 3.5 Sulfide Negative 0 presence 2 Wet Moisture condition **Total Points** 15.5

NOTE: See Table A.1 attached for point system information and data interpretation

REMARKS:

Tested By: Date: L. Geake 8/31/16 Checked By: Date:

Project Name: Alexandria Waterfront

Project No: 16C12012

Sample No:BH-2A, S-21/S-22Depth:73.5-80 ftClassification:LEAN CLAY with SAND (CL)

As received moisture

Test	Unit	Readings	Points
Resistivity	ohm-cm	800	10
pH Redox		4.10	0
Redox	mV	135	0
Sulfide	presence	Negative	0
Moisture	condition	Moist	1
Total Points			11

Tare No.	сЗр
Ww + Wt	49.17
Wd + Wt	40.61
Wt	13.42
Ww	8.56
Wd	27.19
% MC	31.5

Sample No:BH-2A, S-8/S-9/S-10Depth:15-25 ftClassification:SANDY FAT CLAY (CH)

Test Unit Readings Points Resistivity 8 ohm-cm 1,800 pН 6.48 0 -mV 4 Redox 33 Sulfide Negative 0 presence Wet 2 Moisture condition **Total Points** 14

As received
moisture

Tare No.	jaw
Ww + Wt	49.29
Wd + Wt	38.47
Wt	14.98
Ww	10.82
Wd	23.49
% MC	46.1

NOTE: See Table A.1 attached for point system information and data interpretation

REMARKS:

Tested By: Date: L. Geake 8/31/16 Checked By: Date:

Project Name: Alexandria Waterfront

Project No: 16C12012.00

Sample No: SS-2, S-4/S-5 Depth: 6-10 ft Classification: LEAN C

LEAN CLAY with SAND (CL)

As received moisture

Test	Unit	Readings	Points
Resistivity	ohm-cm	1,900	5
рН		7.14	0
Redox	mV	-2	5
Sulfide	presence	Negative	0
Moisture	condition	Wet	2
Total Points			12

Tare No.	doc
Ww + Wt	64.92
Wd + Wt	55.94
Wt	14.52
Ww	8.98
Wd	41.42
% MC	21.7

Sample No: PS-1, S-1/S-2 Depth: 0-4 ft Classification: SILTY SAND with GRAVEL (SM)

As received moisture

% MC	9.1
Wd	48.88
Ww	4.45
Wt	15.21
Wd + Wt	64.09
Ww + Wt	68.54
Tare No.	tk9

Test Unit Points Readings Resistivity ohm-cm 4,200 0 pН 12.03 3 -mV -243 5 Redox Negative Sulfide 0 presence 1 Moisture condition Moist **Total Points** 9

NOTE: See Table A.1 attached for point system information and data interpretation

REMARKS:

Tested By: Date:

LG 9/7/16 Checked By: Date:

Project Name: Alexandria Waterfront

Project No: 16C12012.00

Sample No:SW-1, S-9/S-11Depth:28.5-35 ftClassification:ELASTIC SILT (MH)

Test	Unit	Readings	Points
Resistivity	ohm-cm	2,400	2
рН		6.45	0
Redox	mV	35	4
Sulfide	presence	Negative	0
Moisture	condition	Wet	2
Total Points			8

As received moisture

Tare No.	а
Ww + Wt	45.61
Wd + Wt	33.79
Wt	13.37
Ww	11.82
Wd	20.42
% MC	57.9

Sample No:RCP-1, S-8/S-9Depth:18.5-25 ftClassification:ELASTIC SILT (MH)

Test Unit Readings **Points** Resistivity 5 ohm-cm 2,000 pН 6.38 0 -mν 38 4 Redox Sulfide Negative 0 presence Wet 2 Moisture condition **Total Points** 11

As received	
moisture	

Tare No.	gem
Ww + Wt	63.03
Wd + Wt	43.09
Wt	14.47
Ww	19.94
Wd	28.62
% MC	69.7

NOTE: See Table A.1 attached for point system information and data interpretation

REMARKS:

Tested By: Date:

LG 9/7/16 Checked By: Date:

.

Soil Characteristics Based on Samples Taken Down to Pipe Depth	Points
Resistivityohm-cm (based on water-saturated soil box):	
<1,500	10
≥1,500–1,800	8
>1,800–2,100	5
>2,100–2,500	2
>2,500-3,000	1
>3,000	0
pH:	
0–2	5
2–4	3
46.5	0
6.5–7.5	0†
7.5–8.5	0
>8.5	3
Redox potential:	
> +100 mV	0
+50 to +100 mV	3.5
0 to +50 mV	4
Negative	5
Sulfides:	
Positive	3.5
Trace	2
Negative	0
Moisture:	
Poor drainage, continuously wet	2
Fair drainage, generally moist	1
Good drainage, generally dry	0

*Ten points indicates that soil is corrosive to ductile-iron pipe; protection is needed.

†If sulfides are present and low or negative redox-potential results are obtained, add three points for this range.

Client:	Schnabel Engineering, LL	С			
Project:	Alexandria Waterfront Flo	od Mitigation			
Location:	Alexandria, VA			Project No:	GTX-305292
Boring ID:		Sample Type:		Tested By:	jbr
Sample ID:		Test Date:	09/21/16	Checked By:	emm
Depth :		Test Id:	390020		

Moisture Content of Soil and Rock - ASTM D2216

Boring ID	Sample ID	Depth	Description	Moisture Content,%
BH-1	UD- 1	60.5-62.5	Moist, reddish brown silt	32.5
BH-2A	UD- 1	33-35	Wet, grayish brown silt	57.6

Notes: Temperature of Drying : 110° Celsius

Client:	Schnabel Engineering, L	LC			
Project:	Alexandria Waterfront Fl	ood Mitigation			
Location:	Alexandria, VA			Project No:	GTX-305292
Boring ID:		Sample Type:		Tested By:	md
Sample ID	:	Test Date:	09/23/16	Checked By:	emm
Depth :		Test Id:	390018		

Laboratory Determination of Density (Unit Weight) of Soil Specimens by ASTM D7263

Boring I D	Sample ID	Depth	Visual Description	Bulk Density pcf	Moisture Content %	Dry Density pcf	*
BH-1	UD- 1	60.5-62.5	Moist, reddish brown silt	118.7	32.52	89.54	(1)
BH-2A	UD- 1	33-35	Wet, grayish brown silt	98.01	57.64	62.17	(2)

* Sample Comments

(1): Method B-Cylinder, Intact

(2): Method B-Cylinder, Intact

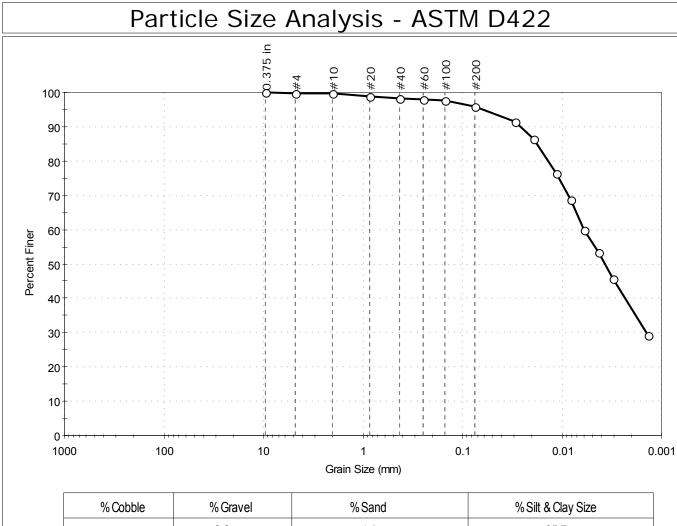
Notes: Moisture Content determined by ASTM D2216.

Client:	Schnabel Engineering, L	LC						
Project:	Alexandria Waterfront Fl	Alexandria Waterfront Flood Mitigation						
Location:	Alexandria, VA			Project No:	GTX-305292			
Boring ID:		Sample Type:		Tested By:	jbr			
Sample ID	:	Test Date:	09/22/16	Checked By:	emm			
Depth :		Test Id:	390023					

Specific Gravity of Soils by ASTM D854

Boring ID	Sample ID	Depth	Visual Description	Specific Gravity	Comment
BH-1	UD- 1	60.5-62.5	Moist, reddish brown silt	2.63	
BH-2A	UD- 1	33-35	Wet, grayish brown silt	2.67	

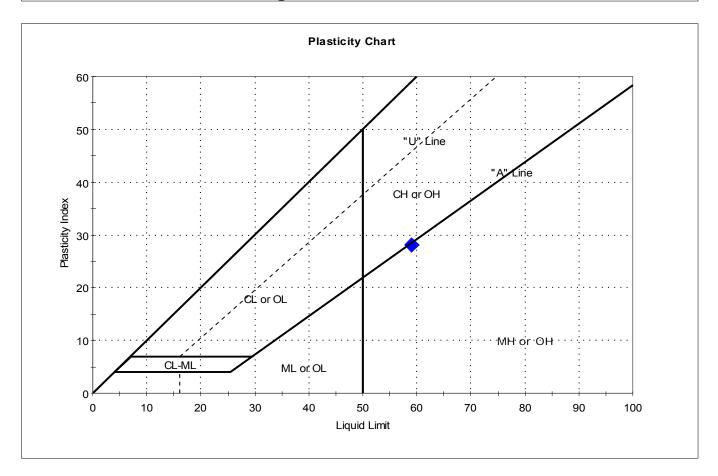
Notes: Specific Gravity performed by using method B (oven dried specimens) of ASTM D854 Moisture Content determined by ASTM D2216.


Client:	Schnabel E	Schnabel Engineering, LLC					
Project:	Alexandria	Alexandria Waterfront Flood Mitigation					
Location:	Alexandria	i, VA			Project No:	GTX-305292	
Boring ID:	BH-1		Sample Type:	tube	Tested By:	jbr	
Sample ID:	: UD-1		Test Date:	09/26/16	Checked By:	emm	
Depth :	60.5-62.5		Test Id:	390021			
Test Comm	nent:						
Visual Desc	cription:	Moist, reddish	brown silt				
Sample Co	mment:						

Particle Size Analysis - ASTM D422 #200 #100 09# #20 #40 C 100 90 80 70 60 Percent Finer 50 40 30 20 10 0 1000 100 10 0.01 0.001 1 0.1 Grain Size (mm)

-	% Cobble		% Gravel		% Sand		% Silt	& Clay Size	
	_		0.0		9.5		90.5		
Sieve Name	Sieve Size, mm	Percent Fine	r Spec. Percent	Complies]			icients	
	1.75				_	$D_{85} = 0.02$	26 mm	$D_{30} = N/A$	
#4	4.75 2.00	100			_	$D_{60} = 0.00$	17 mm	$D_{15} = N/A$	
#10	0.85	99			-	D ₅₀ = N/A		$D_{10} = N/A$	
#40	0.42	96			-	$C_u = N/A$		C _c =N/A	
#60	0.25	95			1				
#100	0.15	93			1	Classification			
#200	0.075	90			1	<u>ASTM</u>	TM Elastic silt (MH)		
	Particle Size (mm)	Percent Finer	Spec. Percent	Complies					
	0.0311	87			1	ΔΔSHTO	Clayey Soils (Δ-7-5 (30))	
	0.0198	84			1	<u>10101110</u>	oldycy Solis ((1110(00))	
	0.0116	79							
	0.0082	76					Sample/Tes	t Description	
	0.0059	72				Sand/Grav	vel Particle Sh		
	0.0042	68				Sand/Gray	vel Hardness :		
	0.0030	65							
	0.0013	57				Dispersion	n Device : App	aratus A - Mech Mixer	
						Dispersior	n Period : 1 mi	nute	
						Specific G	ravity : 2.632		
						Separation	n of Sample: #	#200 Sieve	

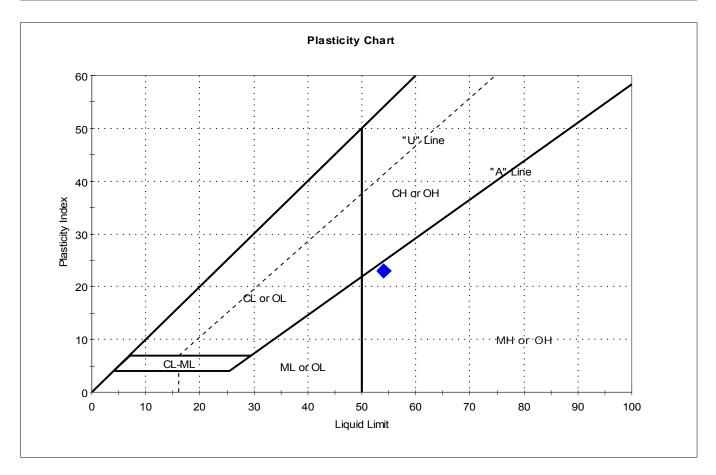
[Client:	Schnabel Engineering, LLC								
	Project:	Alexandria Waterfront Flood Mitigation								
	Location:	Alexandria	, VA			Project No:	GTX-305292			
9	Boring ID:	BH-2A		Sample Type:	tube	Tested By:	jbr			
	Sample ID:	UD-1		Test Date:	09/22/16	Checked By:	emm			
	Depth :	33-35		Test Id:	390022					
	Test Comm	ent:								
	Visual Desc	ription:	Wet, grayish brown silt							
	Sample Cor	nment:								



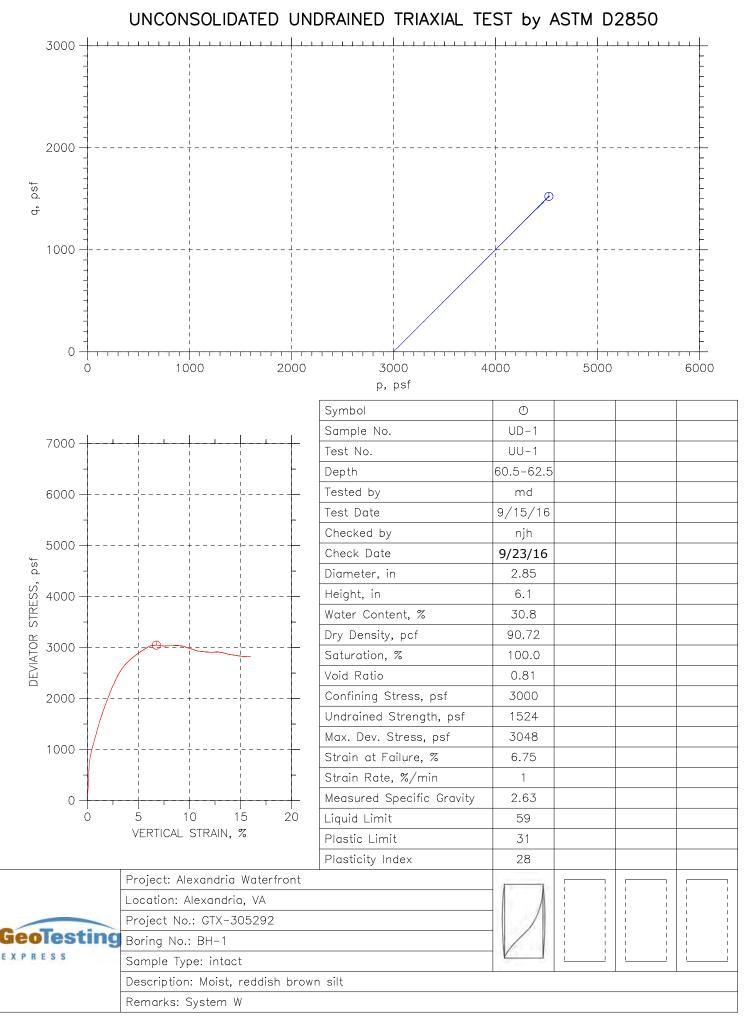
			0.2		4.1		95.7			
Sieve Name	Sieve Size, mm Percent Finer		Spec. Percent	Complies	omplies		Coefficients			
						D ₈₅ = 0.01	78 mm	$D_{30} = 0.0014 \text{ mm}$		
0.375 in	9.50	100				$D_{60} = 0.00$	60 mm	$D_{15} = N/A$		
#4	4.75	100								
#10	2.00	100				$D_{50} = 0.00$	37 mm	$D_{10} = N/A$		
#20	0.85	99				$C_{u} = N/A$		$C_c = N/A$		
#40	0.42	98								
#60	0.25	98					Elastic silt (MF	ication		
#100	0.15	98				<u>ASTM</u>	EldStic Siit (IVIF	ר)		
#200	0.075	96								
	Particle Size (mm)		Spec. Percent	Complies		AASHTO Clayey Soils (A-7-5 (27))				
	0.0295	92				10101110		(1) 0 (27))		
	0.0192	86								
	0.0114	76					Sample/Test	t Description		
	0.0083	69				Sand/Grav	vel Particle Sha			
	0.0060	60				Sand/Cray	vel Hardness :			
	0.0043	53				Sanu/Gra	ver naruriess.			
	0.0031	46				Dispersior	n Device : Appa	aratus A - Mech Mixe	er	
	0.0014	29				Dispersior	Period : 1 mir	nute		
						Specific G	ravity : 2.671			
						Separation	n of Sample: #	200 Sieve		

	Client:	Schnabel E	Ingineering, LL	0			
	Project:	Alexandria	Waterfront Flo	od Mitigation			
	Location:	Alexandria	, VA			Project No:	GTX-305292
Ī	Boring ID:	BH-1		Sample Type:	tube	Tested By:	cam
	Sample ID:	UD-1		Test Date:	09/23/16	Checked By:	emm
	Depth :	60.5-62.5		Test Id:	390015		
	Test Comm	ent:					
	Visual Description: Moist, reddish			brown silt			
Sample Comment:							

Atterberg Limits - ASTM D4318


Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	UD-1	BH-1	60.5-62.5	33	59	31	28	0.1	Elastic silt (MH)

Sample Prepared using the WET method 4% Retained on #40 Sieve Dry Strength: HIGH Dilatancy: SLOW Toughness: LOW


	Client:	Schnabel E	Engineering, LL	С			
	Project:	Alexandria	Waterfront Flo	od Mitigation			
	Location:	Alexandria	, VA			Project No:	GTX-305292
Ī	Boring ID:	BH-2A		Sample Type:	tube	Tested By:	cam
	Sample ID:	UD-1		Test Date:	09/21/16	Checked By:	emm
	Depth :	33-35		Test Id:	390016		
	Test Comm	ent:					
	Visual Description: Wet, grayish b			orown silt			
	Sample Cor	mment:					

Atterberg Limits - ASTM D4318

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	UD-1	BH-2A	33-35	58	54	31	23	1.2	Elastic silt (MH)

Sample Prepared using the WET method 2% Retained on #40 Sieve Dry Strength: VERY HIGH Dilatancy: SLOW Toughness: LOW

Phase calculations based on start and end of test.

Baltimore Division 2101 Van Deman Street • Baltimore, MD 21224 Phone: 410-633-1800 Fax: 410-633-6553 www.microbac.com

September 16, 2016 Report No.: 16I0498

COVER LETTER

Luke Geake Schnabel Engineering 1380 Wilmington Pike, Suite 100 West Chester, PA 19382

RE: Soil Analysis

The report of analyses contains test results for samples received at Microbac Laboratories, Inc., Baltimore Division on 09/08/2016 10:00.

The enclosed results were obtained from and applicable to the sample(s) as received at the laboratory. All sample results are reported on an "as received" basis unless otherwise noted.

All data included in this report has been reviewed and meet the applicable project and certification specific requirements, unless otherwise noted.

This report has been paginated in its entirety and shall not be reproduced except in full, without the written approval of Microbac Laboratories, Inc.

We appreciate the opportunity to service your analytical needs. If you have any questions, please feel free to contact us.

This Data Package contains the following:

- This Cover Page
- Sample Summary
- Test Results
- Certifications/Notes and Definitions
- Cooler Receipt Log
- Chain of Custody

9/16/2016

Final report reviewed by:

Michael M. Gallion/Project Manager

Report issue date

All samples received in proper condition and results conform to ISO 17025 and TNI NELAC standards unless otherwise noted.

If we have not met or exceeded your expectations, please contact Michael M. Gallion/Project Manager at 410-633-1800. You may also contact Trevor Boyce, President at trevor.boyce@microbac.com

Baltimore Division

Phone: 410-633-1800 Fax: 410-633-6553 www.microbac.com

2101 Van Deman Street • Baltimore, MD 21224

CERTIFICATE OF ANALYSIS

Schnabel Engineering	Project: Soil Analysis	Report:	16I0498
1380 Wilmington Pike, Suite 100	Project Number: 16C12012.00, Alexandria Waterfront, Virginia	Reported:	09/16/2016 16:26
West Chester, PA 19382	Project Manager: Luke Geake		

SAMPLE SUMMARY

Sample ID	Laboratory ID	Matrix	Туре	Date Sampled	Date Received
SS-2, S-4&5, 6-10 ft	16I0498-01	Solid	Not Specified	09/07/2016 00:00	09/08/2016 10:00
PS-1, S-1&2, 0-4 ft	16I0498-02	Solid	Not Specified	09/07/2016 00:00	09/08/2016 10:00
SW-1, S-9&11, 28.5-35 ft	16I0498-03	Solid	Not Specified	09/07/2016 00:00	09/08/2016 10:00
RCP-1, S-8&9, 18.5-25 ft	16I0498-04	Solid	Not Specified	09/07/2016 00:00	09/08/2016 10:00
BH-2A, S-8,9&10, 15-25 ft	16I0498-05	Solid	Not Specified	09/07/2016 00:00	09/08/2016 10:00

Microbac Laboratories, Inc. - Baltimore

Michael M. Gallion, Project Manager

Baltimore Division

2101 Van Deman Street • Baltimore, MD 21224

Phone: 410-633-1800 Fax: 410-633-6553 www.microbac.com

CERTIFICATE OF ANALYSIS

Schnabel Engineering	Project: Soil Analysis	Report:	16I0498
1380 Wilmington Pike, Suite 100	Project Number: 16C12012.00, Alexandria Waterfront, Virginia	Reported:	09/16/2016 16:26
West Chester, PA 19382	Project Manager: Luke Geake		

SS-2, S-4&5, 6-10 ft

16I0498-01 (Solid) Sampled: 09/07/2016 00:00; Type: Not Specified

Analyte	Result	Reporting Limit	Units	Limits	Prepared	Analyzed	Analyst	Method	Notes
Microbac Laboratories, Inc Baltimore Wet Chemistry									
% Solids	83.76	0.05	% by Weight		091316 1600	091416 1110	RLD	SM 2540 G-11	
Chloride	100	12	mg/kg dry		091216 1436	091316 2124	PPM	SW-846 9056A	
Sulfate as SO4	12	12	mg/kg dry		091216 1436	091316 2124	PPM	SW-846 9056A	

Microbac Laboratories, Inc. - Baltimore

Michael M. Gallion, Project Manager

Baltimore Division

2101 Van Deman Street • Baltimore, MD 21224

Phone: 410-633-1800 Fax: 410-633-6553 www.microbac.com

CERTIFICATE OF ANALYSIS

Schnabel Engineering	Project: Soil Analysis	Report:	16I0498
1380 Wilmington Pike, Suite 100	Project Number: 16C12012.00, Alexandria Waterfront, Virginia	Reported:	09/16/2016 16:26
West Chester, PA 19382	Project Manager: Luke Geake		

PS-1, S-1&2, 0-4 ft

Analyte Result			Units	Limits	Prepared	Analyzed	Analyst	Method	Notes
Microbac Laboratories, Inc Baltimore									
Wet Chemistry									
% Solids	88.68	0.05	% by Weight		091316 1600	091416 1110	RLD	SM 2540 G-11	
Chloride	160	11	mg/kg dry		091216 1436	091316 2136	PPM	SW-846 9056A	
Sulfate as SO4	790	790 11		mg/kg dry 091216 1436		091316 2136	PPM	SW-846 9056A	

Microbac Laboratories, Inc. - Baltimore

Michael M. Gallion, Project Manager

Baltimore Division

2101 Van Deman Street • Baltimore, MD 21224

Phone: 410-633-1800 Fax: 410-633-6553 www.microbac.com

CERTIFICATE OF ANALYSIS

Schnabel Engineering	Project: Soil Analysis	Report:	16I0498
1380 Wilmington Pike, Suite 100	Project Number: 16C12012.00, Alexandria Waterfront, Virginia	Reported:	09/16/2016 16:26
West Chester, PA 19382	Project Manager: Luke Geake		

SW-1, S-9&11, 28.5-35 ft

1610498-03	(Solid) S	Sampled:	09/07/2016	00:00; Ty	pe: Not Specified
------------	-----------	----------	------------	-----------	-------------------

Analyte	Result	Reporting Limit	Units	Limits	Prepared	Analyzed	Analyst	Method	Notes
		Microba	c Laboratorie	es, Inc B	altimore				
Wet Chemistry									
% Solids	63.97	0.05	% by Weight		091316 1600	091416 1110	RLD	SM 2540 G-11	
Chloride	24	16	mg/kg dry		091216 1436	091316 2148	PPM	SW-846 9056A	
Sulfate as SO4	69	16	mg/kg dry		091216 1436	091316 2148	PPM	SW-846 9056A	

Microbac Laboratories, Inc. - Baltimore

Michael M. Gallion, Project Manager

Baltimore Division

2101 Van Deman Street • Baltimore, MD 21224

Phone: 410-633-1800 Fax: 410-633-6553 www.microbac.com

CERTIFICATE OF ANALYSIS

Schnabel Engineering	Project: Soil Analysis	Report: 16I0498
1380 Wilmington Pike, Suite 1	0 Project Number: 16C12012.00, Alexandria Waterfront, Virginia	Reported: 09/16/2016 16:26
West Chester, PA 19382	Project Manager: Luke Geake	

RCP-1, S-8&9, 18.5-25 ft

Analyte	Result	Reporting Limit	Units	Limits	Prepared	Analyzed	Analyst	Method	Notes
		Microba	c Laboratorie	s, Inc B	altimore				
Wet Chemistry									
% Solids	60.83	0.05	% by Weight		091316 1600	091416 1110	RLD	SM 2540 G-11	
Chloride	50	16	mg/kg dry		091216 1436	091316 2201	PPM	SW-846 9056A	
Sulfate as SO4	150	16	mg/kg dry		091216 1436	091316 2201	PPM	SW-846 9056A	

Microbac Laboratories, Inc. - Baltimore

Michael M. Gallion, Project Manager

Baltimore Division

Phone: 410-633-1800 Fax: 410-633-6553 www.microbac.com

2101 Van Deman Street • Baltimore, MD 21224

CERTIFICATE OF ANALYSIS

Schnabel Engineering	Project: Soil Analysis	Report:	16I0498
1380 Wilmington Pike, Suite 100	Project Number: 16C12012.00, Alexandria Waterfront, Virginia	Reported:	09/16/2016 16:26
West Chester, PA 19382	Project Manager: Luke Geake		

BH-2A, S-8,9&10, 15-25 ft

Analyte	Result	Reporting Limit	Units	Limits	Prepared	Analyzed	Analyst	Method	Notes
-		Microba	c Laboratorie	es, Inc B	altimore				
Wet Chemistry									
% Solids	68.13	0.05	% by Weight		091316 1600	091416 1110	RLD	SM 2540 G-11	
Chloride	19	15	mg/kg dry		091216 1436	091316 2213	PPM	SW-846 9056A	R1
Sulfate as SO4	310	15	mg/kg dry		091216 1436	091316 2213	PPM	SW-846 9056A	R1

Microbac Laboratories, Inc. - Baltimore

Michael M. Gallion, Project Manager

Baltimore Division

Phone: 410-633-1800 Fax: 410-633-6553 www.microbac.com

2101 Van Deman Street • Baltimore, MD 21224

CERTIFICATE OF ANALYSIS

Schnabel Engineering	Project: Soil Analysis	Report: 16I0498
1380 Wilmington Pike, Suite 100	Project Number: 16C12012.00, Alexandria Waterfront, Virginia	Reported: 09/16/2016 16:26
West Chester, PA 19382	Project Manager: Luke Geake	

Project Requested Certification(s):

A2LA (Environmental)

Analyte Certification Exception Summary

No certification exceptions

All analysis performed were analyzed under the required certification unless otherwise noted in the above summary.

Certification List

Below is a list of certifications maintained by Microbac Laboratories, Inc. All data included in this report has been reviewed for and meets all project specific and quality control requirements of the applicable accreditation, unless otherwise noted. A complete list of individual analytes pursuant to each certification below is available upon request.

Code	Description	Certification Number	Expires
Microbac La	boratories, Inc Baltimore		
A2LA1	A2LA (Biology)	410.02	04/30/2017
A2LA2	A2LA (Environmental)	410.01	04/30/2017
VA-B	Commonwealth of Virginia (NELAC) - Baltimore	460285	03/14/2017
CPSC	CPSC Testing of Childrens Products and Jewelry	1115	04/30/2017
Pb	Environmental Lead (ELLAP)	410.01	04/30/2017
MD	State of Maryland (Drinking Water)	109	06/30/2017
WV	West Virginia	054	08/31/2017
Microbac La	boratories, Inc Richmond		
VA-R	Commonwealth of Virginia (NELAC) - Richmond	460022	06/14/2017

Microbac Laboratories, Inc. - Baltimore

Michael M. Gallion, Project Manager

Baltimore Division

Phone: 410-633-1800 Fax: 410-633-6553 www.microbac.com

2101 Van Deman Street • Baltimore, MD 21224

CERTIFICATE OF ANALYSIS

Schnabel Engineering	Project: Soil Analysis	Report:	16I0498
1380 Wilmington Pike, Suite 100	Project Number: 16C12012.00, Alexandria Waterfront, Virginia	Reported:	09/16/2016 16:26
West Chester, PA 19382	Project Manager: Luke Geake		

Qualifiers/Notes and Definitions

General Definitions:

DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference

Analysis Qualifiers/Notes:

Microbac Laboratories, Inc. - Baltimore

R1 Sample Duplicate RPD was out of acceptance limits.

Baltimore Division

Phone: 410-633-1800 Fax: 410-633-6553 www.microbac.com

2101 Van Deman Street • Baltimore, MD 21224

Cooler Receipt Log

Custody Seals Intact:YesCOC/Containers Agree:YesContainers Intact:YesCorrect Preservation:YesReceived On Ice:NoCorrect Number of Containers Received:Yes	Cooler ID: Default Cooler		Cooler Temp: 27.00°C Work	Corder: 161049
	Custody Seals Intact:	Yes	COC/Containers Agree:	Yes
Received On Ice: No Correct Number of Containers Received: Yes	Containers Intact:	Yes	Correct Preservation:	Yes
	Received On Ice:	No	Correct Number of Containers Received:	Yes
Radiation Scan Acceptable:YesSufficient Sample Volume for Testing:Yes	Radiation Scan Acceptable:	Yes	Sufficient Sample Volume for Testing:	Yes
COC Present:YesSamples Received in Proper Condition:Yes	COC Present:	Yes	Samples Received in Proper Condition:	Yes

Comments:

ENGINEERING *ADDITIONAL SAMPLES	N G	CHAIN (OF CUSTODY	West Chester, F 610-696-6066 610-696-7771	West Chester, Pennsylvania 19382 610-696-6066 Phone 610-696-7771 Fax	
Project Number: 16C12012.00						
Schnabel Engineering, LLC				Analysis		
1380 Wilmington Pike, Suite 100 West Chester, PA 19382			Container	/ / /		
Contact: Luke Geake E-mail: Igeake@schnabel-eng.com Phone Number: 610-696-6066 Fax Number: 610-696-7771			2. Geosynthetic 2. Bag 3. Rock 3. Jar 4. Concrete 4. Tube 5. Other 5. Roll			1610498
Project Name: Alexandria Waterfront Project Number: 16C12012.00 Project Location: Alexandria, VA			\$ sar:-			
Sample Con Identification Size	Container Size Type	Sampling Date Time	Sample J. J.		Comments	
SS-2, S-4&5, 6-10 ft 1Qt	2		I X		Analysis per	
PS-1, S-1&2, 0-4 ft 1Qt	2		1 X		client	
SW-1, S-9&11, 28.5-35 ft 1Qt	2		1 X		18/5 mm	9
RCP-1, S-8&9, 18.5-25 ft 1Qt	2		1 X			
BH-2A, S-8,9&10, 15-25 ft 1Qt	5		1 X			
Relinquished By: Juke A.	FEDEX	Date: Time:	Received By: Arthant Smith	Date: 4/8/16 Time: 10:004	Turn Around Time Requested:	10
Relinquished By:			Received By:	4	No. of Business Days:	
ab Relinquished By:		Date: Time:	Received By:	Date: Time:	Special Instructions:	
Contractor VIA · Eader						

Cooler Receipt Form /	Samp	le
Acceptance & Noncompliane	ce Form	n

Microbac Laboratories, Inc., Baltimore Division Control # 606-03 Effective Date: 07/11/2016 Page 1 of 1

		lers Receiv		Ŧ	14	Receipt Date / Tin			
Client:		anabel 1	Engineerin	9,14	C	Work Order #	1610498		
Form C	omplete	ed By:	Intheny So	in			1		
Shippe	r:		1-			□ Microb	ac Client	\Box UPS \Box Fed.	Ex
	y Tape	Intact:	1			CHES NO			
	ners Int					YES DNO			
			e .	1					
Sample	e Recer	ved on Ice	or refrige	rated:		YES A		rature: 27.°C	00
Padiati	ion Sca	n.				Negati		mR	
				lane with the					ш
		ody Presen		•		(YES) NO			
Sample	e Bottle	IDs agree	with CO	C:		TESKNO		-	
Preserv	vation r	equiremen	ts met:			YES NO	O (Not Che	cked	
Correc	t Numb	er of Cont	ainers / Sa	ample V	olume:	YES/NO	O (If No, cont	act client immed	iately)
		container:				YES / NO			
								Oil Filter	Solid
i ype o	of Samp	IC.							Sond
						Sludge	Food Swal	o Otner	
Container Ty			10100	1101	1. 15/2	NOUL		A TT L COMPANY	-11-10
	eserved_	H2SO4	HNO3	HCI	NaOH	NaOH/Ascorbic		reserved pH <2_	_, pH >10
	eserved_	H2SO4	HNO3	HC1	NaOH	NaOH/Ascorbic	C - 200	reserved pH <2_	_, pH >10
	eserved	H2SO4	HNO3	HCI	NaOH	NaOH/Ascorbic		reserved pH <2_	, pH >10 , pH >10
	eserved_	H2SO4	HNO3	HCl	NaOH	NaOH/Ascorbic		reserved pH <2_	
	eserved_	H2SO4	HNO3	HCl	NaOH	NaOH/Ascorbic		reserved pH <2_	_, pH >10
	eserved_	H2SO4	HNO3	HCI	NaOH	NaOH/Ascorbic	· · · · · · · · · · · · · · · · · · ·	preserved pH <2_	, pH >10
	eserved	H2SO4	_HNO3	HCl	NaOH	NaOH/Ascorbic		preserved pH <2_	_, pH >10
	eserved_	H2SO4	HNO3	HCl	NaOH	NaOH/Ascorbic		reserved pH <2_	_, pH >10
	eserved_	H2SO4	HNO3	HCl	NaOH	NaOH/Ascorbic		reserved pH <2_	, pH >10
	eserved_	H2SO4	HNO3	HCl_	NaOH	NaOH/Ascorbic /		reserved pH <2_	
	eserved_	H2SO4	HNO3	HC1	NaOH	NaOH/Ascorbic		preserved pH <2_	_, pri >10
	eserved_	HCl	HC1/As		f Analysis)		a at time of A	(nalysis)	
	eserved_				of Analysis)				
	reserved reserved					at time of Analysis)			
Unpres	proved	H2SO4	HNO3	HCI	NaOH	NaOH/Ascorbic Ad	rid If pre	eserved pH <2	pH >10
Unpres			HNO3	HCI	NaOH	NaOH/Ascorbic Ac		served pH <2	
Unpres	erved	H2SO4	HNO3			NaOH/Ascorbic Ad			
D									
Describe pre All Acid pres					2 nH	All others >) and <	10 (usually 2	(-8)	
	erved ~2	. pri	H.SO	HNO.	NaOH	All others >2 and < mls added	- in fusidity a		
Sample ID: Sample ID:			H_2SO_4 H_2SO_4	HNO.	N2OH	mis added			
Sample ID:			H-SO.	HNO.	NaOH	mls added			
Sample ID:			H-SO	HNO.	NaOH	mls added			
HSO _ Sulf	uric Anid	HNO Ni				oxide, ASC – Ascorbi	c Acid. NaTH	IO – Sodium Thi	osulfate
Describ	e Anoma	lies: 5 zig	-loc bag:	S OF S	oile				
a the of			1						
		tion / Summa		and the second se					
Date / T	ime:			Cont	act:	C	ontact By:		
Comme	nts:								

Page 12 of 12

Baltimore Division 2101 Van Deman Street • Baltimore, MD 21224 Phone: 410-633-1800 Fax: 410-633-6553 www.microbac.com

September 16, 2016 Report No.: 16I0191

COVER LETTER

Luke Geake Schnabel Engineering 1380 Wilmington Pike, Suite 100 West Chester, PA 19382

RE: Soil Analysis

The report of analyses contains test results for samples received at Microbac Laboratories, Inc., Baltimore Division on 09/01/2016 10:50.

The enclosed results were obtained from and applicable to the sample(s) as received at the laboratory. All sample results are reported on an "as received" basis unless otherwise noted.

All data included in this report has been reviewed and meet the applicable project and certification specific requirements, unless otherwise noted.

This report has been paginated in its entirety and shall not be reproduced except in full, without the written approval of Microbac Laboratories, Inc.

We appreciate the opportunity to service your analytical needs. If you have any questions, please feel free to contact us.

This Data Package contains the following:

- This Cover Page
- Sample Summary
- Test Results
- Certifications/Notes and Definitions
- Cooler Receipt Log
- Chain of Custody

9/16/2016

Final report reviewed by:

Michael M. Gallion/Project Manager

Report issue date

All samples received in proper condition and results conform to ISO 17025 and TNI NELAC standards unless otherwise noted.

If we have not met or exceeded your expectations, please contact Michael M. Gallion/Project Manager at 410-633-1800. You may also contact Trevor Boyce, President at trevor.boyce@microbac.com

Baltimore Division

2101 Van Deman Street • Baltimore, MD 21224

CERTIFICATE OF ANALYSIS

Schnabel Engineering	Project: Soil Analysis	Report:	1610191
1380 Wilmington Pike, Suite 100	Project Number: Alexandria Waterfront	Reported:	09/16/2016 16:27
West Chester, PA 19382	Project Manager: Luke Geake		

SAMPLE SUMMARY

Sample ID	Laboratory ID	Matrix	Туре	Date Sampled	Date Received
SS-1, S-7 & 8, 13.5-20'	16I0191-01	Solid	Composite	08/31/2016 00:00	09/01/2016 10:50
BH-1, S-2 & 3, 2-6'	16I0191-02	Solid	Composite	08/31/2016 00:00	09/01/2016 10:50
BH-1, S-11 & 12, 33.5-40'	16I0191-03	Solid	Composite	08/31/2016 00:00	09/01/2016 10:50
BH-1, S-18 & 19, 68.5-75'	16I0191-04	Solid	Composite	08/31/2016 00:00	09/01/2016 10:50
BH-2A, S-21 & 22, 73.5-80'	16I0191-05	Solid	Composite	08/31/2016 00:00	09/01/2016 10:50

Microbac Laboratories, Inc. - Baltimore

Michael M. Gallion, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Original Report

Phone: 410-633-1800 Fax: 410-633-6553 www.microbac.com

Baltimore Division

Phone: 410-633-1800 Fax: 410-633-6553 www.microbac.com

2101 Van Deman Street • Baltimore, MD 21224

CERTIFICATE OF ANALYSIS

Schnabel Engineering	Project: Soil Analysis	Report: 16I0191
1380 Wilmington Pike, Suite 100	Project Number: Alexandria Waterfront	Reported: 09/16/2016 16:27
West Chester, PA 19382	Project Manager: Luke Geake	

SS-1, S-7 & 8, 13.5-20'

16I0191-01 (Solid) Sa	mpled: 08/31/2010	5 00:00; Type:	Composite
-----------------------	-------------------	----------------	-----------

Analyte	Result	Reporting Limit	Units	Limits	Prepared	Analyzed	Analyst	Method	Notes		
Wet Chemistry	Microbac Laboratories, Inc Baltimore Wet Chemistry										
% Solids	65.53	0.05	% by Weight		090716 1340	090916 1350	RLD	SM 2540 G-11			
Chloride	48	15	mg/kg dry		090616 1200	090616 1758	PPM	SW-846 9056A			
Sulfate as SO4	57	15	mg/kg dry		090616 1200	090616 1758	PPM	SW-846 9056A			

Microbac Laboratories, Inc. - Baltimore

Michael M. Gallion, Project Manager

Baltimore Division

Phone: 410-633-1800 Fax: 410-633-6553 www.microbac.com

2101 Van Deman Street • Baltimore, MD 21224

CERTIFICATE OF ANALYSIS

Schnabel Engineering	Project: Soil Analysis	Report:	16I0191
1380 Wilmington Pike, Suite 100	Project Number: Alexandria Waterfront	Reported:	09/16/2016 16:27
West Chester, PA 19382	Project Manager: Luke Geake		

BH-1, S-2 & 3, 2-6'

16I0191-02 (Solid) Sampled: 08/31/2016 00:00;	Type: Composite
---	-----------------

Analyte	Result	Reporting Limit	Units	Limits	Prepared	Analyzed	Analyst	Method	Notes	
Microbac Laboratories, Inc Baltimore										
Wet Chemistry										
% Solids	83.68	0.05	% by Weight		090716 1340	090916 1350	RLD	SM 2540 G-11		
Chloride	61	12	mg/kg dry		090616 1200	090616 1823	PPM	SW-846 9056A		
Sulfate as SO4	390	12	mg/kg dry		090616 1200	090616 1823	PPM	SW-846 9056A		

Microbac Laboratories, Inc. - Baltimore

Michael M. Gallion, Project Manager

Baltimore Division

Phone: 410-633-1800 Fax: 410-633-6553 www.microbac.com

2101 Van Deman Street • Baltimore, MD 21224

CERTIFICATE OF ANALYSIS

Schnabel Engineering	Project: Soil Analysis	Report:	16I0191
1380 Wilmington Pike, Suite 100	Project Number: Alexandria Waterfront	Reported:	09/16/2016 16:27
West Chester, PA 19382	Project Manager: Luke Geake		

BH-1, S-11 & 12, 33.5-40'

16I0191-03 (Solid) Sa	ampled: 08/31/2016 00:00;	Type: Composite
-----------------------	---------------------------	-----------------

Analyte	Reporting Result Limit Units Limits Prepared Analyzed Analyst		Method	Notes						
Microbac Laboratories, Inc Baltimore										
Wet Chemistry										
% Solids	64.04	0.05	% by Weight		090716 1340	090916 1350	RLD	SM 2540 G-11		
Chloride	18	15	mg/kg dry		090616 1200	090616 1848	PPM	SW-846 9056A		
Sulfate as SO4	43	15	mg/kg dry		090616 1200	090616 1848	PPM	SW-846 9056A	6 9056A	

Microbac Laboratories, Inc. - Baltimore

Michael M. Gallion, Project Manager

Baltimore Division

Phone: 410-633-1800 Fax: 410-633-6553 www.microbac.com

2101 Van Deman Street • Baltimore, MD 21224

CERTIFICATE OF ANALYSIS

Schnabel Engineering	Project: Soil Analysis	Report:	16I0191
1380 Wilmington Pike, Suite 100	Project Number: Alexandria Waterfront	Reported:	09/16/2016 16:27
West Chester, PA 19382	Project Manager: Luke Geake		

BH-1, S-18 & 19, 68.5-75'

Analyte	Result	Reporting Limit	Units	Limits	Prepared	Analyzed	Analyst	Method	Notes	
Microbac Laboratories, Inc Baltimore										
Wet Chemistry										
% Solids	74.83	0.05	% by Weight		090716 1340	090916 1350	RLD	SM 2540 G-11		
Chloride	ND	13	mg/kg dry		090616 1200	090616 1912	PPM	SW-846 9056A		
Sulfate as SO4	18	13	mg/kg dry		090616 1200	090616 1912	PPM	SW-846 9056A	56A	

Microbac Laboratories, Inc. - Baltimore

Michael M. Gallion, Project Manager

Baltimore Division

Phone: 410-633-1800 Fax: 410-633-6553 www.microbac.com

2101 Van Deman Street • Baltimore, MD 21224

CERTIFICATE OF ANALYSIS

Schnabel Engineering	Project: Soil Analysis	Report:	16I0191
1380 Wilmington Pike, Suite 100	Project Number: Alexandria Waterfront	Reported:	09/16/2016 16:27
West Chester, PA 19382	Project Manager: Luke Geake		

BH-2A, S-21 & 22, 73.5-80'

Analyte	Result	Reporting Limit	Units	Limits	Prepared	Analyzed	Analyst	Method	Notes
Microbac Laboratories, Inc Baltimore									
Wet Chemistry									
% Solids	79.70	0.05	% by Weight		090716 1340	090916 1350	RLD	SM 2540 G-11	
Chloride	ND	12	mg/kg dry		090616 1200	090616 1937	PPM	SW-846 9056A	
Sulfate as SO4	15	12	mg/kg dry		090616 1200	090616 1937	PPM	SW-846 9056A	

Microbac Laboratories, Inc. - Baltimore

Michael M. Gallion, Project Manager

Baltimore Division

Phone: 410-633-1800 Fax: 410-633-6553 www.microbac.com

2101 Van Deman Street • Baltimore, MD 21224

CERTIFICATE OF ANALYSIS

Schnabel Engineering	Project: Soil Analysis	Report:	16I0191	
1380 Wilmington Pike, Suite 100	Project Number: Alexandria Waterfront	Reported:	09/16/2016 16:27	
West Chester, PA 19382	Project Manager: Luke Geake			

Project Requested Certification(s):

A2LA (Environmental)

Analyte Certification Exception Summary

No certification exceptions

All analysis performed were analyzed under the required certification unless otherwise noted in the above summary.

Certification List

Below is a list of certifications maintained by Microbac Laboratories, Inc. All data included in this report has been reviewed for and meets all project specific and quality control requirements of the applicable accreditation, unless otherwise noted. A complete list of individual analytes pursuant to each certification below is available upon request.

Code	Description	Certification Number	Expires						
Microbac La	Microbac Laboratories, Inc Baltimore								
A2LA1	A2LA (Biology)	410.02	04/30/2017						
A2LA2	A2LA (Environmental)	410.01	04/30/2017						
VA-B	Commonwealth of Virginia (NELAC) - Baltimore	460285	03/14/2017						
CPSC	CPSC Testing of Childrens Products and Jewelry	1115	04/30/2017						
Pb	Environmental Lead (ELLAP)	410.01	04/30/2017						
MD	State of Maryland (Drinking Water)	109	06/30/2017						
WV	West Virginia	054	08/31/2017						
Microbac La	Microbac Laboratories, Inc Richmond								
VA-R	Commonwealth of Virginia (NELAC) - Richmond	460022	06/14/2017						

Microbac Laboratories, Inc. - Baltimore

Michael M. Gallion, Project Manager

Baltimore Division

Phone: 410-633-1800 Fax: 410-633-6553 www.microbac.com

2101 Van Deman Street • Baltimore, MD 21224

CERTIFICATE OF ANALYSIS

Schnabel Engineering	Project: Soil Analysis	Report:	16I0191
1380 Wilmington Pike, Suite 100	Project Number: Alexandria Waterfront	Reported:	09/16/2016 16:27
West Chester, PA 19382	Project Manager: Luke Geake		

Qualifiers/Notes and Definitions

General Definitions:

DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference

Page 9 of 12

Baltimore Division 2101 Van Deman Street • Baltimore, MD 21224 Phone: 410-633-1800 Fax: 410-633-6553 www.microbac.com

Cooler Receipt Log

Cooler ID: Default Cooler		Cooler Temp: 21.60°C Work Order: 1610191
Custody Seals Intact:	Yes	COC/Containers Agree: Yes
Containers Intact:	Yes	Correct Preservation: Yes
Received On Ice:	Yes	Correct Number of Containers Received: Yes
Radiation Scan Acceptable:	Yes	Sufficient Sample Volume for Testing: Yes
COC Present:	Yes	Samples Received in Proper Condition: Yes

Comments:

CHAIN OF CUSTODY

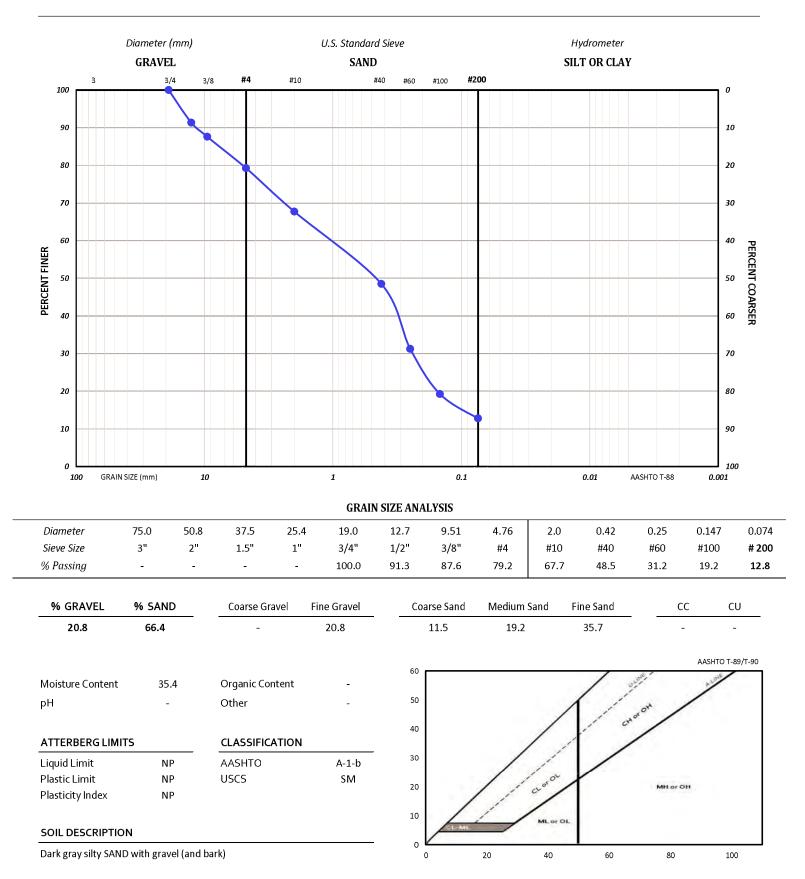
1380 Wilmington Pike, Suite 100 West Chester, Pennsylvania 19382 610-696-6066 Phone 610-696-7771 Fax

Project Number: 16C12012.00				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~										
Schnabel Engineering, LLC								I	Analysi	S		, , , , , , , , , , , , , , , , , , , ,		
1380 Wilmington Pike, Suite 100 West Chester, PA 19382					Sample Type 1. Soil 2. Geosynthetic	Containe 1. Bucke 2. Bag	et /	_						
Contact: Luke Geake E-mail: lgeake@schnabel-eng.com Phone Number: 610-696-6066 Fax Number: 610-696-7771				 3. Rock 4. Concrete 5. Other 	3. Jar 4. Tube 5. Roll	13					/ {			
Project Name: Alexandria Waterf Project Number: 16C12012.00 Project Location: Alexandria, VA	ront					1/~	ionides +							
Sample Identification		tainer Type	Sampli Date Ti		Sample Type	72		/					16 0191	
SS-1, S-7&8, 13.5-20 ft	1Qt	2			1	X								
BH-1, S-2&3, 2-6 ft	1Qt	2			1	X								Ē
BH-1, S-11&12, 33.5-40 ft	1Qt	2			1	X								
BH-1, S-18&19, 68.5-75 ft	1Qt	2			1	X								-
BH-2A, S-21&22, 73.5-80 ft	1Qt	2			1	X								
Relinquished By: Date: 8/3//10 Time:			31/16	Received By: Anthony Smith Date: 4/1 Time: 10:1:			Requested:							
Relinquished By: Date: Time: Date:				Received By: Date: Time		ASAP								
Relinquished By: Date: Time:				Received By: Date: Time:			Special Instructions:							
SHIPPED VIA: FedEx														

Cooler Receipt Form / Sar Acceptance & Noncompliance F						
Number of Coolers Received:	Progrint Data / Timos # /1 /11 10155					
Client: Schnabel Engineering, LLC	Receipt Date / Time: <u>4/1/16 10:50 A</u> m Work Order #					
Form Completed By:						
	□ Microbac 🗹 Client □ UPS □ FedEx					
Shipper:						
Custody Tape Intact:	YES NO / NA					
Containers Intact:	YESDNO					
Sample Received on Ice or refrigerated:	YES NO / NA					
	Infrared (IR) Temperature: <u>21.6</u> °C					
Radiation Scan:	Negative or mR/hr					
Chain of Custody Present with shipment:	YESDNO					
Sample Bottle IDs agree with COC:	YES DNO					
Preservation requirements met:	YES / NO / Not Checked					
Correct Number of Containers / Sample Volu						
Headspace in container:	me: YES NO (If No, contact client immediately) YES / NO / NA					
Type of Sample:	Water Soil Wipes Oil Filter Solid					
	Sludge Food Swab Other					
Container Type / Quantity:						
And	NaOH NaOH/Ascorbic Acid: If preserved pH <2, pH >10					
	NaOH NaOH/Ascorbic Acid If preserved pH <2, pH >10 NaOH NaOH/Ascorbic Acid If preserved pH <2, pH >10					
	NaOH NaOH/Ascorbic Acid If preserved pH <2, pH >10 NaOH NaOH/Ascorbic Acid If preserved pH <2, pH >10					
	NaOH NaOH/Ascorbic Acid If preserved pH <2 , pH >10					
	NaOH NaOH/Ascorbic Acid If preserved pH <2 , pH >10					
	NaOH NaOH/Ascorbic Acid If preserved pH <2, pH >10					
the second se	NaOH NaOH/Ascorbic Acid If preserved pH <2 , pH >10					
	NaOH NaOH/Ascorbic Acid If preserved pH <2, pH >10					
	NaOH NaOH/Ascorbic Acid If preserved pH <2, pH >10					
	NaOH NaOH/Ascorbic Acid If preserved pH <2, pH >10					
	HCl / NaTHIO (Checked at time of Analysis)					
F - Unpreserved NaTHIO (Checked at time of And						
S Unpreserved NaTHIO (Checked at time of An SN Unpreserved NaTHIO NaTHIO/EDTA (Ch	alysis)					
SNOIDIESEIVEUNATHIONATHIO/EDTA (CI	ecked at thire of Analysis)					
Unpreserved H2SO4 HNO3 HC1 Na						
UnpreservedH2SO4HNO3HClNa						
UnpreservedH2SO4HNO3HCINa	OH NaOH/Ascorbic Acid If preserved pH <2, pH >10					
10 h						
Describe preservation requirements not met: All Acid preserved <2 pH NaOH preserved >12 pH	4 H others > 2 and < 10 (conceller 4.9)					
	$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Sample ID: H ₂ SO ₄ HNO ₃ NaO Sample ID: H ₂ SO ₄ HNO ₃ NaO						
Sample ID: H103 H401 Sample ID: H2SO4 HNO3 NaO						
Sample ID: H ₂ SO ₄ HNO ₃ NaO						
H2SO4 - Sulfuric Acid, HNO3 - Nitric Acid, NaOH - Sodium	n Hydroxide, ASC – Ascorbic Acid, NaTHIO – Sodium Thiosulfate					
Describe Anomalies: Samples in 5 zio 106	bags.					
Contact information / Summary of Actions:						
	Contact By:					
Comments:						

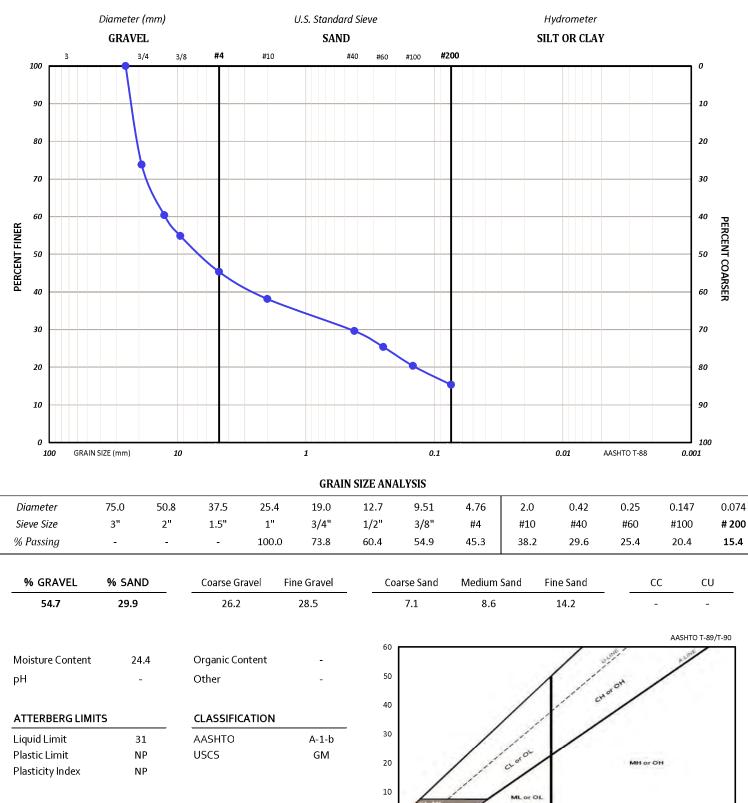
APPENDIX D

LABORATORY TEST DATA BY OTHERS


SUMMARY OF LABORATORY TESTING

WATERFRONT SMALL AREA

PROJECT #:	15303359	SAMPLED: -	JAY KAY TESTING
SAMPLES:	17	LOCATION: -	5233 Lehman Road, Suite 110
REPORT:	04/29/14	REMARKS: -	Spring Grove, PA 17362 Phone: (410) 259-5101


BORING	SAMPLE	DEPTH	MC%	OM %	LL	PL	PI	% FINES	USCS
B-1	S-4	8.5-10.0	33.6	-	-	-	-	-	-
B-1	S-5	13.5-15.0	35.4	-	NP	NP	NP	12.8	SM
B-1	S-6	18.5-20.0	26.9	-	-	-	-	-	-
B-1	S-7	23.5-25.0	46.5	-	-	-	-	-	-
B-1	S-8	28.5-30.0	24.4	-	31	NP	NP	15.4	GM
B-1	S-10	38.5-40.0	82.7	-	-	-	-	-	-
B-1	S-13	53.5-55.0	49.3	-	-	-	-	-	-
B-1	S-15	63.5-65.0	33.5	-	-	-	-	-	-
B-2	S-5	13.5-15.0	35.9	-	43	29	14	50.2	ML
B-2	S-6	18.5-20.0	71.3	-	-	-	-	-	-
B-2	S-7	23.5-25.0	59.6	-	79	39	40	90.9	MH
B-2	S-8	28.5-30.0	51.1	-	-	-	-	-	-
B-2	S-9	33.5-35.0	53.9	-	-	-	-	-	-
B-2	S-10	38.5-40.0	59.7	-	-	-	-	-	-
B-2	S-11	43.5-45.0	54.0	-	-	-	-	-	-
B-2	S-12	48.5-50.0	17.2	-	-	-	-	-	-
B-2	S-15	63.5-65.0	19.5	-	-	-	-	-	-
		Jay Ka	y Testing(A	ASHTO-Acci	edited)				

BORING:	B-1	PROJECT #:	15303359	JAY KAY TESTING
SAMPLE:	S-5	SAMPLED:	-	5233 Lehman Road, Suite 110
DEPTH:	13.5-15.0'	LOCATION:	-	Spring Grove, PA 17362 Phone: (410) 259-5101

04/29/14

BORING:	B-1	PROJECT #:	15303359	JAY KAY TESTING
SAMPLE:	S-8	SAMPLED:	-	5233 Lehman Road, Suite 110
DEPTH:	28.5-30.0'	LOCATION:	-	Spring Grove, PA 17362 Phone: (410) 259-5101

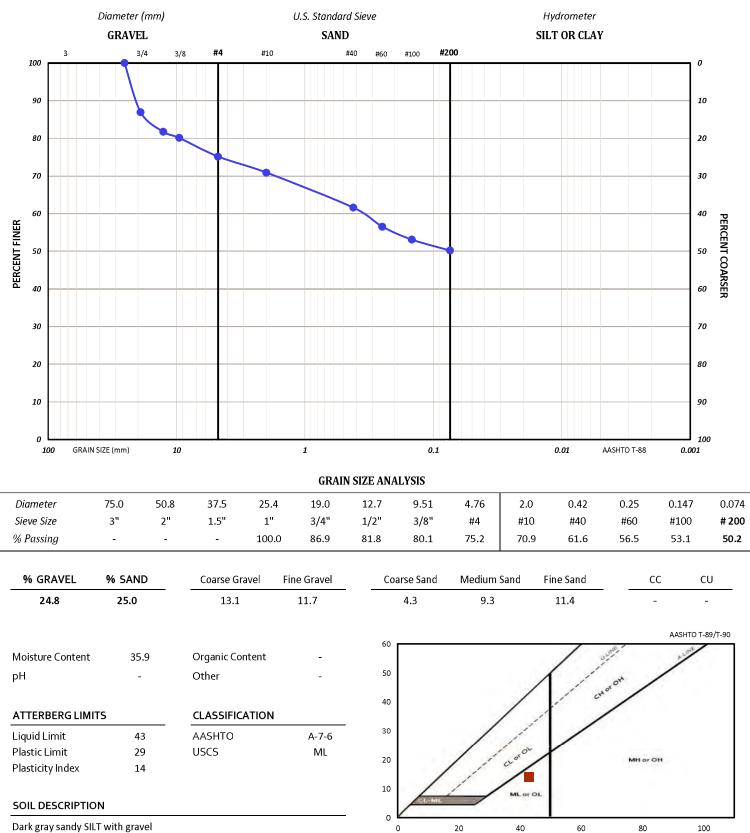
SOIL DESCRIPTION

Dark gray silty GRAVEL with sand (and bark)

40

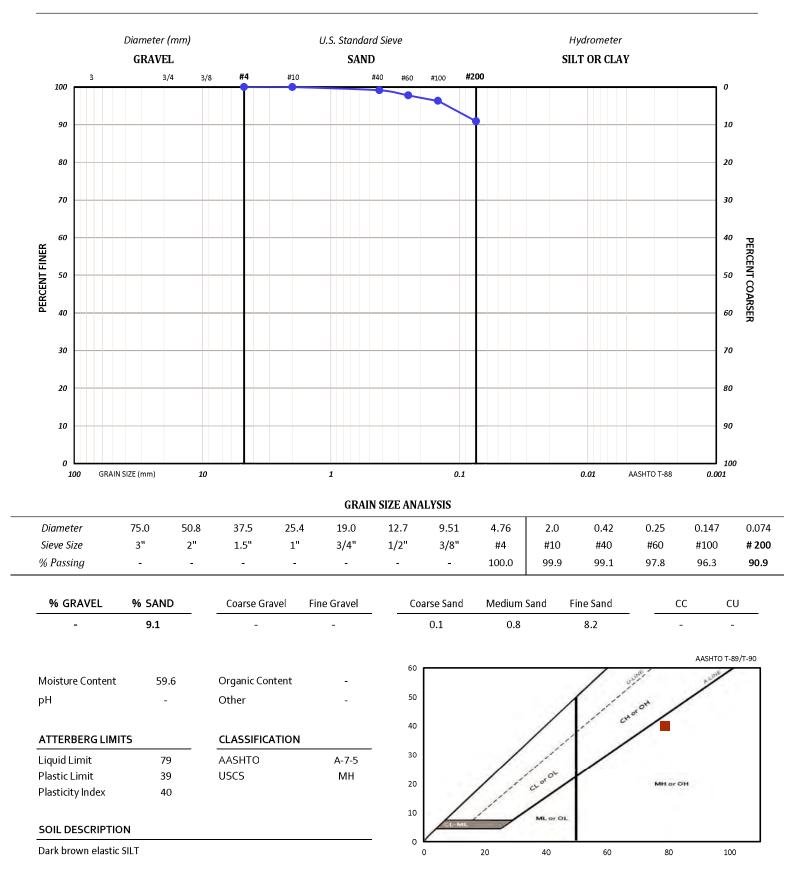
60

80


20

0

0


100

BORING:	B-2	PROJECT #:	15303359	JAY KAY TESTING
SAMPLE:	S-5	SAMPLED:	-	5233 Lehman Road, Suite 110
DEPTH:	13.5-15.0'	LOCATION:	-	Spring Grove, PA 17362 Phone: (410) 259-5101

Dark gray sandy SILT with gravel

